Suppr超能文献

一般连续时间马尔可夫链的几何流体近似

Geometric fluid approximation for general continuous-time Markov chains.

作者信息

Michaelides Michalis, Hillston Jane, Sanguinetti Guido

机构信息

School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.

出版信息

Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190100. doi: 10.1098/rspa.2019.0100. Epub 2019 Sep 25.

Abstract

Fluid approximations have seen great success in approximating the macro-scale behaviour of Markov systems with a large number of discrete states. However, these methods rely on the continuous-time Markov chain (CTMC) having a particular population structure which suggests a natural continuous state-space endowed with a dynamics for the approximating process. We construct here a general method based on spectral analysis of the transition matrix of the CTMC, without the need for a population structure. Specifically, we use the popular manifold learning method of diffusion maps to analyse the transition matrix as the operator of a hidden continuous process. An embedding of states in a continuous space is recovered, and the space is endowed with a drift vector field inferred via Gaussian process regression. In this manner, we construct an ordinary differential equation whose solution approximates the evolution of the CTMC mean, mapped onto the continuous space (known as the fluid limit).

摘要

流体近似在近似具有大量离散状态的马尔可夫系统的宏观行为方面取得了巨大成功。然而,这些方法依赖于连续时间马尔可夫链(CTMC)具有特定的群体结构,这暗示了一个自然的连续状态空间,并赋予了近似过程一个动力学。我们在此构造一种基于CTMC转移矩阵谱分析的通用方法,无需群体结构。具体而言,我们使用流行的扩散映射流形学习方法将转移矩阵分析为一个隐藏连续过程的算子。恢复状态在连续空间中的嵌入,并通过高斯过程回归推断出该空间的漂移向量场。通过这种方式,我们构造了一个常微分方程,其解近似于映射到连续空间(称为流体极限)的CTMC均值的演化。

相似文献

1
Geometric fluid approximation for general continuous-time Markov chains.
Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190100. doi: 10.1098/rspa.2019.0100. Epub 2019 Sep 25.
3
Hybrid Markov chain models of S-I-R disease dynamics.
J Math Biol. 2017 Sep;75(3):521-541. doi: 10.1007/s00285-016-1085-2. Epub 2016 Dec 24.
4
Optimal dimensionality reduction of Markov chains using graph transformation.
J Chem Phys. 2020 Dec 28;153(24):244108. doi: 10.1063/5.0025174.
5
On real-valued SDE and nonnegative-valued SDE population models with demographic variability.
J Math Biol. 2020 Aug;81(2):487-515. doi: 10.1007/s00285-020-01516-8. Epub 2020 Jul 16.
7
Minimal diffusion formulation of Markov chain ensembles and its application to ion channel clusters.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062116. doi: 10.1103/PhysRevE.91.062116. Epub 2015 Jun 12.
8
Approximating Markov chains.
Proc Natl Acad Sci U S A. 1992 May 15;89(10):4432-6. doi: 10.1073/pnas.89.10.4432.
9
Adaptive moment closure for parameter inference of biochemical reaction networks.
Biosystems. 2016 Nov;149:15-25. doi: 10.1016/j.biosystems.2016.07.005. Epub 2016 Jul 25.
10
Revisiting the time until fixation of a neutral mutant in a finite population - A coalescent theory approach.
J Theor Biol. 2015 Sep 7;380:98-102. doi: 10.1016/j.jtbi.2015.05.019. Epub 2015 May 21.

本文引用的文献

1
Genomic encoding of transcriptional burst kinetics.
Nature. 2019 Jan;565(7738):251-254. doi: 10.1038/s41586-018-0836-1. Epub 2019 Jan 2.
2
Efficient Low-Order Approximation of First-Passage Time Distributions.
Phys Rev Lett. 2017 Nov 24;119(21):210601. doi: 10.1103/PhysRevLett.119.210601. Epub 2017 Nov 20.
3
Beta-Poisson model for single-cell RNA-seq data analyses.
Bioinformatics. 2016 Jul 15;32(14):2128-35. doi: 10.1093/bioinformatics/btw202. Epub 2016 Apr 19.
4
Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7426-31. doi: 10.1073/pnas.0500334102. Epub 2005 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验