Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil.
Laboratory of Magnetic resonance (LIM-44), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
Int J Mol Sci. 2020 Jan 31;21(3):958. doi: 10.3390/ijms21030958.
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.
磁热疗(MHT)已被证明是治疗胶质母细胞瘤(GBM)的一种很有前途的替代疗法。本研究分为三个部分:第一部分评估氨基硅烷涂层超顺磁性氧化铁纳米粒子(SPIONa)的加热潜力。第二和第三部分包括评估 MHT 在体外或体内 GBM 模型中的多次应用。SPIONa(100nm,+20mV)的获得加热曲线及其特定吸收率(SAR)确定了频率(309kHz 和 557kHz)和磁场(300Gauss)的最佳治疗条件,这些条件是基于 C6 GBM 细胞系的三种体外 MHT 应用确定的。所有测试的应用和参数下,生物发光(BLI)信号均衰减,309kHz 加 300Gauss 显示出最佳的治疗效果。这些参数也被确定为三种体内 MHT 应用,其中 BLI 信号的衰减与肿瘤的减少以及通过正电子发射断层扫描(PET)图像评估的肿瘤葡萄糖摄取减少相关。行为评估显示每次 MHT 治疗后都有轻微改善,但三次应用后,运动功能显示出相关且渐进的改善,直到最新评估。因此,MHT 的多次应用允许体内 GBM 肿瘤几乎完全消退。然而,在治疗急性期后,需要进一步评估以跟踪肿瘤的演变或完全消退。BLI、正电子发射断层扫描(PET)和自发运动评估技术在纵向监测 MHT 技术的治疗效果方面非常有效。
Int J Mol Sci. 2024-9-19
Einstein (Sao Paulo). 2020-1-10
Int J Nanomedicine. 2011-3-25
Int J Mol Sci. 2024-9-19
Pharmaceutics. 2023-7-15
Nanomaterials (Basel). 2019-10-14
Front Med (Lausanne). 2019-1-29