文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用氨基硅烷修饰的氧化铁纳米粒子的多次磁热疗技术治疗脑胶质母细胞瘤的疗效:体外与体内研究。

Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

机构信息

Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil.

Laboratory of Magnetic resonance (LIM-44), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.

出版信息

Int J Mol Sci. 2020 Jan 31;21(3):958. doi: 10.3390/ijms21030958.


DOI:10.3390/ijms21030958
PMID:32023985
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7038138/
Abstract

Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.

摘要

磁热疗(MHT)已被证明是治疗胶质母细胞瘤(GBM)的一种很有前途的替代疗法。本研究分为三个部分:第一部分评估氨基硅烷涂层超顺磁性氧化铁纳米粒子(SPIONa)的加热潜力。第二和第三部分包括评估 MHT 在体外或体内 GBM 模型中的多次应用。SPIONa(100nm,+20mV)的获得加热曲线及其特定吸收率(SAR)确定了频率(309kHz 和 557kHz)和磁场(300Gauss)的最佳治疗条件,这些条件是基于 C6 GBM 细胞系的三种体外 MHT 应用确定的。所有测试的应用和参数下,生物发光(BLI)信号均衰减,309kHz 加 300Gauss 显示出最佳的治疗效果。这些参数也被确定为三种体内 MHT 应用,其中 BLI 信号的衰减与肿瘤的减少以及通过正电子发射断层扫描(PET)图像评估的肿瘤葡萄糖摄取减少相关。行为评估显示每次 MHT 治疗后都有轻微改善,但三次应用后,运动功能显示出相关且渐进的改善,直到最新评估。因此,MHT 的多次应用允许体内 GBM 肿瘤几乎完全消退。然而,在治疗急性期后,需要进一步评估以跟踪肿瘤的演变或完全消退。BLI、正电子发射断层扫描(PET)和自发运动评估技术在纵向监测 MHT 技术的治疗效果方面非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/13d13d7063a4/ijms-21-00958-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/da9ff8f66ccb/ijms-21-00958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/2f0252cf0d42/ijms-21-00958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/fd74f9eea480/ijms-21-00958-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/7d74ceb1e6c6/ijms-21-00958-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/20cdb621711e/ijms-21-00958-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/6d50d03f6d7e/ijms-21-00958-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/f8ebba9e932b/ijms-21-00958-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/5297afff116e/ijms-21-00958-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/0fedf5b5337f/ijms-21-00958-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/13d13d7063a4/ijms-21-00958-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/da9ff8f66ccb/ijms-21-00958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/2f0252cf0d42/ijms-21-00958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/fd74f9eea480/ijms-21-00958-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/7d74ceb1e6c6/ijms-21-00958-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/20cdb621711e/ijms-21-00958-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/6d50d03f6d7e/ijms-21-00958-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/f8ebba9e932b/ijms-21-00958-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/5297afff116e/ijms-21-00958-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/0fedf5b5337f/ijms-21-00958-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b06d/7038138/13d13d7063a4/ijms-21-00958-g010.jpg

相似文献

[1]
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

Int J Mol Sci. 2020-1-31

[2]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[3]
In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells.

Pharmaceutics. 2021-8-7

[4]
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Int J Mol Sci. 2024-9-19

[5]
Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model.

Einstein (Sao Paulo). 2020-1-10

[6]
Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells.

Sci Rep. 2020-2-3

[7]
Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.

Cell Cycle. 2021-6

[8]
Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia.

Biomaterials. 2016-8-12

[9]
Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment.

Int J Nanomedicine. 2011-3-25

[10]
Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles.

Biomater Sci. 2021-4-21

引用本文的文献

[1]
Magnetic hyperthermia therapy enhances the chemoradiosensitivity of glioblastoma.

Sci Rep. 2025-3-27

[2]
Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review).

Oncol Rep. 2025-4

[3]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[4]
In Silico Approach to Model Heat Distribution of Magnetic Hyperthermia in the Tumoral and Healthy Vascular Network Using Tumor-on-a-Chip to Evaluate Effective Therapy.

Pharmaceutics. 2024-8-31

[5]
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Int J Mol Sci. 2024-9-19

[6]
Recent Developments in Magnetic Hyperthermia Therapy (MHT) and Magnetic Particle Imaging (MPI) in the Brain Tumor Field: A Scoping Review and Meta-Analysis.

Micromachines (Basel). 2024-4-24

[7]
Breast Cancer Treatment Using the Magneto-Hyperthermia Technique Associated with Omega-3 Polyunsaturated Fatty Acids' Supplementation and Physical Training.

Pharmaceutics. 2024-2-22

[8]
Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity.

Pharmaceutics. 2023-9-30

[9]
Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review.

Pharmaceutics. 2023-7-15

[10]
How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2023

本文引用的文献

[1]
Contribution of Different Positron Emission Tomography Tracers in Glioma Management: Focus on Glioblastoma.

Front Oncol. 2019-11-1

[2]
Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.

Nanomaterials (Basel). 2019-10-14

[3]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[4]
Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with αβ-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death.

ACS Appl Mater Interfaces. 2019-7-22

[5]
Noninvasive assessment and quantification of tumor vascularization using [18F]FDG-PET/CT and CE-CT in a tumor model with modifiable angiogenesis-an animal experimental prospective cohort study.

EJNMMI Res. 2019-6-21

[6]
Efficacy of moderately hypofractionated simultaneous integrated boost intensity-modulated radiotherapy combined with temozolomide for the postoperative treatment of glioblastoma multiforme: a single-institution experience.

Radiat Oncol. 2019-6-13

[7]
Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles.

Dalton Trans. 2019-3-19

[8]
The Path Toward PET-Guided Radiation Therapy for Glioblastoma in Laboratory Animals: A Mini Review.

Front Med (Lausanne). 2019-1-29

[9]
Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications.

Int J Hyperthermia. 2019-2-7

[10]
Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles).

Acta Biomater. 2019-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索