Department of Psychology.
Department of Child Development and Education.
Psychol Methods. 2020 Aug;25(4):393-411. doi: 10.1037/met0000243. Epub 2019 Oct 17.
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit, respectively. This full cadre of significance testing options is not yet available for multiply imputed data sets, as methodologists have yet to develop a general score test for this context. Thus, the goal of this article is to outline a new score test for multiply imputed data. Consistent with its complete-data counterpart, this imputation-based score test provides an estimate of the familiar expected parameter change statistic. The new procedure is available in the R package semTools and naturally suited for identifying local misfit in SEM applications (i.e., a model modification index). The article uses a simulation study to assess the performance (Type I error rate, power) of the proposed score test relative to the score test produced by full information maximum likelihood (FIML) estimation. Due to the two-stage nature of multiple imputation, the score test exhibited slightly lower power than the corresponding FIML statistic in some situations but was generally well calibrated. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
结构方程模型(SEM)应用程序通常采用三部曲的显著性检验,包括似然比检验、 Wald 检验和得分检验或修正指数。研究人员使用这些检验分别评估全局模型拟合度,评估个别估计值是否与零值有差异,以及确定潜在的局部不拟合源。由于方法学家尚未为这种情况开发一般的得分检验,因此对于多重插补数据集来说,尚未提供全套的显著性检验选项。因此,本文的目的是概述一种用于多重插补数据的新得分检验。与完整数据对应的方法一致,这种基于插补的得分检验提供了熟悉的期望参数变化统计量的估计值。新程序可在 R 包 semTools 中使用,非常适合识别 SEM 应用中的局部不匹配(即模型修正指数)。本文使用模拟研究来评估相对于完全信息极大似然估计(FIML)产生的得分检验,提出的得分检验的性能(I 型错误率、功效)。由于多重插补的两阶段性质,在某些情况下,得分检验的功效略低于相应的 FIML 统计量,但总体上校准良好。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。