Suppr超能文献

在序数数据结构方程模型中评估基于插补的拟合统计量:MI2S方法。

Evaluating Imputation-Based Fit Statistics in Structural Equation Modeling With Ordinal Data: The MI2S Approach.

作者信息

Sriutaisuk Suppanut, Liu Yu, Chung Seungwon, Kim Hanjoe, Gu Fei

机构信息

Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand.

University of Houston, Houston, TX, USA.

出版信息

Educ Psychol Meas. 2024 Jul 27:00131644241261271. doi: 10.1177/00131644241261271.

Abstract

The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two alternative test statistics: the mean-adjusted test statistic ( ) and the mean- and variance-adjusted test statistic ( ). Our results showed that the MI2S-based generally outperformed other test statistics examined in a wide range of conditions. The MI2S-based root mean square error of approximation also exhibited good performance. This article demonstrates the MI2S approach with an empirical data set and provides Mplus and R code for its implementation.

摘要

多重填补两阶段(MI2S)方法有望用于评估具有多重填补数据的有序变量结构方程模型的模型拟合度。然而,以往的研究仅考察了基于MI2S的基于残差的检验统计量的性能。本研究通过考察两种替代检验统计量的性能扩展了先前的研究:均值调整检验统计量( )和均值与方差调整检验统计量( )。我们的结果表明,基于MI2S的 通常在广泛的条件下优于其他检验统计量。基于MI2S的近似均方根误差也表现出良好的性能。本文用一个实证数据集展示了MI2S方法,并提供了用于实现它的Mplus和R代码。

相似文献

1
Evaluating Imputation-Based Fit Statistics in Structural Equation Modeling With Ordinal Data: The MI2S Approach.
Educ Psychol Meas. 2024 Jul 27:00131644241261271. doi: 10.1177/00131644241261271.
3
Generative adversarial networks for imputing missing data for big data clinical research.
BMC Med Res Methodol. 2021 Apr 20;21(1):78. doi: 10.1186/s12874-021-01272-3.
6
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
7
Validation of the IHE type 2 diabetes cohort model in the Japanese clinical setting.
J Med Econ. 2025 Dec;28(1):944-963. doi: 10.1080/13696998.2025.2517506. Epub 2025 Jun 22.
8
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.

本文引用的文献

1
Evaluating Close Fit in Ordinal Factor Analysis Models With Multiply Imputed Data.
Educ Psychol Meas. 2024 Feb;84(1):171-189. doi: 10.1177/00131644231158854. Epub 2023 Mar 27.
2
Pooling test statistics across multiply imputed datasets for nonnormal items.
Behav Res Methods. 2024 Mar;56(3):1229-1243. doi: 10.3758/s13428-023-02088-3. Epub 2023 Mar 27.
3
Missing data: An update on the state of the art.
Psychol Methods. 2025 Apr;30(2):322-339. doi: 10.1037/met0000563. Epub 2023 Mar 16.
4
Who Returns? Understanding Varieties of Longitudinal Participation in MIDUS.
J Aging Health. 2021 Dec;33(10):896-907. doi: 10.1177/08982643211018552. Epub 2021 May 17.
6
Fitting Ordinal Factor Analysis Models With Missing Data: A Comparison Between Pairwise Deletion and Multiple Imputation.
Educ Psychol Meas. 2020 Feb;80(1):41-66. doi: 10.1177/0013164419845039. Epub 2019 Apr 26.
7
A multiple imputation score test for model modification in structural equation models.
Psychol Methods. 2020 Aug;25(4):393-411. doi: 10.1037/met0000243. Epub 2019 Oct 17.
8
Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques.
Multivariate Behav Res. 2020 Jan-Feb;55(1):87-101. doi: 10.1080/00273171.2019.1608799. Epub 2019 May 17.
9
Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling.
Multivariate Behav Res. 2019 May-Jun;54(3):323-337. doi: 10.1080/00273171.2018.1523000. Epub 2019 Apr 5.
10
Evaluating methods for handling missing ordinal data in structural equation modeling.
Behav Res Methods. 2019 Oct;51(5):2337-2355. doi: 10.3758/s13428-018-1187-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验