Department of Biology, University of Ottawa, Ontario, Canada.
Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada.
Genome Biol Evol. 2019 Nov 1;11(11):3194-3206. doi: 10.1093/gbe/evz227.
Microorganisms require efficient translation to grow and replicate rapidly, and translation is often rate-limited by initiation. A prominent feature that facilitates translation initiation in bacteria is the Shine-Dalgarno (SD) sequence. However, there is much debate over its conservation in Cyanobacteria and in chloroplasts which presumably originated from endosymbiosis of ancient Cyanobacteria. Elucidating the utilization of SD sequences in Cyanobacteria and in chloroplasts is therefore important to understand whether 1) SD role in Cyanobacterial translation has been reduced prior to chloroplast endosymbiosis or 2) translation in Cyanobacteria and in plastid has been subjected to different evolutionary pressures. To test these alternatives, we employed genomic, proteomic, and transcriptomic data to trace differences in SD usage among Synechocystis species, Microcystis aeruginosa, cyanophages, Nicotiana tabacum chloroplast, and Arabidopsis thaliana chloroplast. We corrected their mis-annotated 16S rRNA 3' terminus using an RNA-Seq-based approach to determine their SD/anti-SD locational constraints using an improved measurement DtoStart. We found that cyanophages well-mimic Cyanobacteria in SD usage because both have been under the same selection pressure for SD-mediated initiation. Whereas chloroplasts lost this similarity because the need for SD-facilitated initiation has been reduced in plastids having much reduced genome size and different ribosomal proteins as a result of host-symbiont coevolution. Consequently, SD sequence significantly increases protein expression in Cyanobacteria but not in chloroplasts, and only Cyanobacterial genes compensate for a lack of SD sequence by having weaker secondary structures at the 5' UTR. Our results suggest different evolutionary pressures operate on translation initiation in Cyanobacteria and in chloroplast.
微生物需要高效的翻译来快速生长和复制,而翻译通常受到起始的限制。在细菌中促进翻译起始的一个突出特征是 Shine-Dalgarno (SD) 序列。然而,关于其在蓝细菌和叶绿体中的保守性存在很多争议,叶绿体可能起源于古代蓝细菌的内共生。因此,阐明蓝细菌和叶绿体中 SD 序列的利用对理解 1)SD 在蓝细菌翻译中的作用是否在叶绿体内共生之前已经减少,或者 2)蓝细菌和质体中的翻译是否受到不同的进化压力,非常重要。为了检验这些假设,我们利用基因组、蛋白质组和转录组数据来追踪蓝藻物种、铜绿微囊藻、蓝藻噬菌体、烟草叶绿体和拟南芥叶绿体中 SD 利用的差异。我们使用基于 RNA-Seq 的方法纠正了它们错误注释的 16S rRNA 3' 末端,使用改进的测量 DtoStart 来确定它们的 SD/anti-SD 位置约束。我们发现蓝藻噬菌体很好地模拟了蓝细菌在 SD 利用方面的特征,因为它们都受到相同的 SD 介导起始选择压力的影响。然而,叶绿体失去了这种相似性,因为在具有较小基因组和不同核糖体蛋白的质体中,SD 介导起始的需求减少了,这是由于宿主-共生体共同进化的结果。因此,SD 序列在蓝细菌中显著增加了蛋白质表达,但在叶绿体中没有,并且只有蓝细菌基因通过在 5'UTR 具有较弱的二级结构来补偿 SD 序列的缺乏。我们的研究结果表明,在蓝细菌和叶绿体中,翻译起始受到不同的进化压力的影响。