Suppr超能文献

基于新型 3D 卷积网络和从 2D 网络转移的知识对肺结节候选物进行自动分类。

Automatic classification of lung nodule candidates based on a novel 3D convolution network and knowledge transferred from a 2D network.

机构信息

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100083, China.

College of Electrical Engineering, University of South China, Hengyang, Hunan, 421001, China.

出版信息

Med Phys. 2019 Dec;46(12):5499-5513. doi: 10.1002/mp.13867. Epub 2019 Nov 6.

Abstract

OBJECTIVE

In the automatic lung nodule detection system, the authenticity of a large number of nodule candidates needs to be judged, which is a classification task. However, the variable shapes and sizes of the lung nodules have posed a great challenge to the classification of candidates. To solve this problem, we propose a method for classifying nodule candidates through three-dimensional (3D) convolution neural network (ConvNet) model which is trained by transferring knowledge from a multiresolution two-dimensional (2D) ConvNet model.

METHODS

In this scheme, a novel 3D ConvNet model is preweighted with the weights of the trained 2D ConvNet model, and then the 3D ConvNet model is trained with 3D image volumes. In this way, the knowledge transfer method can make 3D network easier to converge and make full use of the spatial information of nodules with different sizes and shapes to improve the classification accuracy.

RESULTS

The experimental results on 551 065 pulmonary nodule candidates in the LUNA16 dataset show that our method gains a competitive average score in the false-positive reduction track in lung nodule detection, with the sensitivities of 0.619 and 0.642 at 0.125 and 0.25 FPs per scan, respectively.

CONCLUSIONS

The proposed method can maintain satisfactory classification accuracy even when the false-positive rate is extremely small in the face of nodules of different sizes and shapes. Moreover, as a transfer learning idea, the method to transfer knowledge from 2D ConvNet to 3D ConvNet is the first attempt to carry out full migration of parameters of various layers including convolution layers, full connection layers, and classifier between different dimensional models, which is more conducive to utilizing the existing 2D ConvNet resources and generalizing transfer learning schemes.

摘要

目的

在自动肺结节检测系统中,需要判断大量结节候选者的真实性,这是一个分类任务。然而,肺结节的形状和大小的多变性给候选者的分类带来了巨大的挑战。为了解决这个问题,我们提出了一种通过三维(3D)卷积神经网络(ConvNet)模型对结节候选者进行分类的方法,该方法通过从多分辨率二维(2D)ConvNet 模型转移知识来训练 3D 卷积神经网络模型。

方法

在该方案中,一个新的 3D ConvNet 模型通过使用训练好的 2D ConvNet 模型的权重进行预加权,然后使用 3D 图像体积对 3D ConvNet 模型进行训练。通过这种方式,知识转移方法可以使 3D 网络更容易收敛,并充分利用不同大小和形状的结节的空间信息,提高分类准确性。

结果

在 LUNA16 数据集的 551065 个肺结节候选者上的实验结果表明,我们的方法在肺结节检测的假阳性减少跟踪中获得了有竞争力的平均分数,在 0.125 和 0.25 的 FP/s 时,灵敏度分别为 0.619 和 0.642。

结论

该方法即使在面对不同大小和形状的结节时,假阳性率极低,也能保持令人满意的分类准确性。此外,作为一种迁移学习思想,从 2D ConvNet 向 3D ConvNet 转移知识的方法首次尝试在不同维度模型之间进行包括卷积层、全连接层和分类器在内的各层参数的完全迁移,这更有利于利用现有的 2D ConvNet 资源和推广迁移学习方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验