Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Adv Mater. 2019 Nov;31(48):e1903841. doi: 10.1002/adma.201903841. Epub 2019 Oct 17.
A titanium carbide (Ti C T ) MXene is employed as an efficient solid support to host a nitrogen (N) and sulfur (S) coordinated ruthenium single atom (Ru ) catalyst, which displays superior activity toward the hydrogen evolution reaction (HER). X-ray absorption fine structure spectroscopy and aberration corrected scanning transmission electron microscopy reveal the atomic dispersion of Ru on the Ti C T MXene support and the successful coordination of Ru with the N and S species on the Ti C T MXene. The resultant Ru -N-S-Ti C T catalyst exhibits a low overpotential of 76 mV to achieve the current density of 10 mA cm . Furthermore, it is shown that integrating the Ru -N-S-Ti C T catalyst on n np -Si photocathode enables photoelectrochemical hydrogen production with exceptionally high photocurrent density of 37.6 mA cm that is higher than the reported precious Pt and other noble metals catalysts coupled to Si photocathodes. Density functional theory calculations suggest that Ru coordinated with N and S sites on the Ti C T MXene support is the origin of this enhanced HER activity. This work would extend the possibility of using the MXene family as a solid support for the rational design of various single atom catalysts.
碳化钛 (TiC T) MXene 被用作一种高效的固体载体,用于负载氮 (N) 和硫 (S) 配位的钌单原子 (Ru ) 催化剂,该催化剂在析氢反应 (HER) 中表现出优异的活性。X 射线吸收精细结构光谱和像差校正扫描透射电子显微镜揭示了 Ru 在 TiC T MXene 载体上的原子分散以及 Ru 与 TiC T MXene 上的 N 和 S 物种的成功配位。所得的 Ru-N-S-TiC T 催化剂在实现 10 mA cm 的电流密度时,表现出低至 76 mV 的过电位。此外,研究表明,将 Ru-N-S-TiC T 催化剂集成到 npn-Si 光电阴极上,可实现光电化学制氢,其光电流密度高达 37.6 mA cm,高于报道的与 Si 光电阴极耦合的贵金属 Pt 和其他贵金属催化剂。密度泛函理论计算表明,Ru 与 TiC T MXene 载体上的 N 和 S 位点的配位是增强 HER 活性的原因。这项工作将扩展使用 MXene 家族作为合理设计各种单原子催化剂的固体载体的可能性。