Suppr超能文献

在 CNN 中逐片修改滤波器层以利用神经影像学数据的空间同质性。

Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data.

机构信息

Department of Psychiatry and Neurosciences | CCM, Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.

Humboldt-Universität zu Berlin, 10117, Berlin, Germany.

出版信息

Sci Rep. 2021 Dec 27;11(1):24447. doi: 10.1038/s41598-021-03785-9.

Abstract

Convolutional neural networks (CNNs)-as a type of deep learning-have been specifically designed for highly heterogeneous data, such as natural images. Neuroimaging data, however, is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. To harness spatial homogeneity of neuroimaging data, we suggest here a new CNN architecture that combines the idea of hierarchical abstraction in CNNs with a prior on the spatial homogeneity of neuroimaging data. Whereas early layers are trained globally using standard convolutional layers, we introduce patch individual filters (PIF) for higher, more abstract layers. By learning filters in individual latent space patches without sharing weights, PIF layers can learn abstract features faster and specific to regions. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer's disease detection on ADNI data and multiple sclerosis detection on private hospital data, and compared it with two baseline models, a standard CNN and a patch-based CNN. We obtained two main results: First, CNNs using PIF layers converge consistently faster, measured in run time in seconds and number of iterations than both baseline models. Second, both the standard CNN and the PIF model outperformed the patch-based CNN in terms of balanced accuracy and receiver operating characteristic area under the curve (ROC AUC) with a maximal balanced accuracy (ROC AUC) of 94.21% (99.10%) for the sex classification task (PIF model), and 81.24% and 80.48% (88.89% and 87.35%) respectively for the Alzheimer's disease and multiple sclerosis detection tasks (standard CNN model). In conclusion, we demonstrated that CNNs using PIF layers result in faster convergence while obtaining the same predictive performance as a standard CNN. To the best of our knowledge, this is the first study that introduces a prior in form of an inductive bias to harness spatial homogeneity of neuroimaging data.

摘要

卷积神经网络(CNN)-作为一种深度学习方法-专门设计用于处理高度异质的数据,如自然图像。然而,神经影像学数据由于以下两个原因相对同质:(1) 大脑的统一结构,以及 (2) 为了通过线性和非线性变换将数据空间标准化到标准模板而额外付出的努力。为了利用神经影像学数据的空间均匀性,我们在这里提出了一种新的 CNN 架构,该架构将 CNN 中的分层抽象思想与神经影像学数据空间均匀性的先验相结合。虽然早期的层使用标准卷积层进行全局训练,但我们为更高层引入了补丁个体滤波器(PIF)。通过在没有共享权重的情况下在单独的潜在空间补丁中学习滤波器,PIF 层可以更快地学习到特定于区域的抽象特征。我们在三个不同的任务和数据集上对 PIF 层进行了彻底评估,即使用 UK Biobank 数据进行性别分类、使用 ADNI 数据进行阿尔茨海默病检测以及使用私人医院数据进行多发性硬化症检测,并与两个基线模型(标准 CNN 和基于补丁的 CNN)进行了比较。我们得到了两个主要结果:首先,使用 PIF 层的 CNN 在运行时间(以秒和迭代次数衡量)和收敛速度方面始终快于两个基线模型。其次,在性别分类任务中,标准 CNN 和 PIF 模型在平衡准确率和接收器工作特征曲线下面积(ROC AUC)方面均优于基于补丁的 CNN,其中最大的平衡准确率(ROC AUC)分别为 94.21%(PIF 模型)和 81.24%和 80.48%(88.89%和 87.35%)(标准 CNN 模型)。对于阿尔茨海默病和多发性硬化症检测任务,分别为 81.24%和 80.48%(88.89%和 87.35%)。总之,我们证明了使用 PIF 层的 CNN 可以更快地收敛,同时获得与标准 CNN 相同的预测性能。据我们所知,这是首次将一种形式的归纳偏差(先验)引入到神经影像学数据的空间均匀性中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fef0/8712523/a65572e066be/41598_2021_3785_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验