Suppr超能文献

脑网络通过θ振荡进行通信以编码视觉空间工作记忆任务中的高负荷:一项脑电图连接性研究

Brain Networks Communicate Through Theta Oscillations to Encode High Load in a Visuospatial Working Memory Task: An EEG Connectivity Study.

作者信息

Muthukrishnan Suriya Prakash, Soni Sunaina, Sharma Ratna

机构信息

Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.

出版信息

Brain Topogr. 2020 Jan;33(1):75-85. doi: 10.1007/s10548-019-00739-3. Epub 2019 Oct 24.

Abstract

The encoding of visuospatial information is the foremost and indispensable step which determines the outcome in a visuospatial working memory (VSWM) task. It is considered to play a crucial role in limiting our ability to attend and process only 3-5 integrated items of information. Despite its importance in determining VSWM performance, the neural mechanisms underlying VSWM encoding have not been clearly differentiated from those involved during VSWM retention, manipulation and/or retrieval. The high temporal resolution of electroencephalography (EEG) and improved spatial resolution with dense array data acquisition makes it an ideal tool to study the dynamics in the functional brain connectivity during a cognitive task. In the present study, the changes in the functional brain connectivity due to memory load during VSWM encoding were studied using 128-channel EEG. Lagged linear coherence (LagR) was computed between 84 regions of interest (ROIs) defined according to the Brodmann areas for seven EEG frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-45 Hz). Interestingly, out of seven EEG frequency bands investigated in the current study, LagR of only theta band varied significantly in 13 brain connections due to memory load during VSWM encoding. LagR of theta band increased significantly at high memory load when compared to low memory load in twelve brain connections with the maximum change observed between right cuneus and right middle temporal gyrus (Cohen's d = 0.836), indicating the integration of brain processes to confront the increase in memory demands. Theta LagR decreased significantly between left postcentral gyrus and right precentral gyrus at high memory load as compared to low memory load, which might have a role for sustaining attention during encoding. Change in the LagR values due to memory load between fusiform gyrus and lingual gyrus in the right hemisphere had a positive correlation (r = 0.464, p = 0.003) with the error rate, signifying the crucial role played by these two regions in predicting the performance. The current study has not only identified the neural connections that are responsible for the formation of working memory traces during VSWM encoding, but also support the notion that encoding is a rate-limiting process underlying our memory capacity limit.

摘要

视觉空间信息的编码是视觉空间工作记忆(VSWM)任务中首要且不可或缺的步骤,它决定了任务的结果。人们认为它在限制我们仅关注和处理3 - 5个整合信息项的能力方面起着关键作用。尽管其在决定VSWM表现方面很重要,但VSWM编码背后的神经机制尚未与VSWM保持、操作和/或检索过程中涉及的神经机制明确区分开来。脑电图(EEG)的高时间分辨率以及密集阵列数据采集带来的空间分辨率提升,使其成为研究认知任务期间功能性脑连接动态变化的理想工具。在本研究中,使用128通道脑电图研究了VSWM编码期间由于记忆负荷导致的功能性脑连接变化。在根据布罗德曼区域定义的84个感兴趣区域(ROI)之间计算滞后线性相干性(LagR),针对七个脑电频段:δ(2 - 4Hz)、θ(4 - 8Hz)、α1(8 - 10.5Hz)、α2(10.5 - 13Hz)、β1(13 - 20Hz)、β2(20 - 30Hz)和γ(30 - 45Hz)。有趣的是,在本研究调查的七个脑电频段中,由于VSWM编码期间的记忆负荷,仅θ频段的LagR在13个脑连接中变化显著。与低记忆负荷相比,在12个脑连接中,高记忆负荷时θ频段的LagR显著增加,在右楔叶和右颞中回之间观察到最大变化(科恩d值 = 0.836),表明大脑过程整合以应对记忆需求的增加。与低记忆负荷相比,高记忆负荷时左中央后回和右中央前回之间的θ LagR显著降低,这可能在编码过程中维持注意力方面发挥作用。右半球梭状回和舌回之间由于记忆负荷导致的LagR值变化与错误率呈正相关(r = 0.464,p = 0.003),表明这两个区域在预测表现方面发挥着关键作用。本研究不仅确定了VSWM编码期间负责工作记忆痕迹形成的神经连接,还支持了编码是我们记忆容量限制背后的限速过程这一观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验