Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.
Department of Radiology, Hannover Medical School, Hannover, Germany.
J Nucl Med. 2020 Apr;61(4):590-596. doi: 10.2967/jnumed.119.232488. Epub 2019 Oct 25.
Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with F-FDG can be serially imaged in the early stages of pressure-overload-induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. C57Bl6/N mice underwent transverse aortic constriction (TAC) ( = 22), sham surgery ( = 12), or coronary ligation as an inflammation-positive control ( = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 μL vs. 23.8 ± 1.7 μL, < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 ( = -0.669, = 0.010). PET imaging identified significantly higher left ventricular F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The F-FDG signal correlated with ejection fraction ( = -0.75, = 0.01) and ventricular volume ( = 0.75, < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload.
炎症是心肌缺血后心室重构的原因之一,但它在非缺血性心力衰竭中的作用尚不清楚。局部组织炎症在发病过程中很难连续评估。虽然 F-FDG 会在炎症性白细胞中积累,因此可能识别心肌微环境中的炎症,但尚不清楚这种成像技术是否可以分离压力超负荷性心力衰竭中的弥漫性白细胞。我们旨在评估 F-FDG 是否可以在压力超负荷诱导的心力衰竭的早期阶段进行连续成像,并比较与心脏 MRI 评估的功能障碍的时间过程。C57Bl6/N 小鼠接受了横主动脉缩窄(TAC)( = 22)、假手术( = 12)或冠状动脉结扎作为炎症阳性对照( = 5)。MRI 在 TAC 后 2 天和 8 天评估心室几何形状和收缩功能。免疫染色在压力超负荷早期识别炎症性白细胞浸润的程度。F-FDG PET 扫描在 TAC 后 3 天和 7 天进行,在氯胺酮-甲苯噻嗪麻醉下抑制心肌细胞葡萄糖摄取。与假手术相比,压力超负荷引起左心室迅速扩张(收缩末期容积,第 2 天:40.6 ± 10.2 μL 比 23.8 ± 1.7 μL, <0.001)。收缩功能也同样受损(射血分数,第 2 天:40.9% ± 9.7% 比 59.2% ± 4.4%, <0.001)。第 8 天收缩功能障碍的严重程度与组织学定义的心肌巨噬细胞密度成正比( = -0.669, = 0.010)。PET 成像在第 3 天(10.5 ± 4.1 注射剂量百分比 [%ID]/g 比 3.8 ± 0.9 %ID/g, <0.001)和第 7 天(7.8 ± 3.7 %ID/g 比 3.0 ± 0.8 %ID/g, = 0.006)在 TAC 小鼠中比在假手术小鼠中检测到左心室 F-FDG 摄取显著增加,尽管 TAC 小鼠中心肌细胞抑制的效率各不相同。F-FDG 信号与射血分数( = -0.75, = 0.01)和心室容积( = 0.75, <0.01)相关。Western 免疫印迹显示 TAC 后 8 天左心室葡萄糖转运蛋白 4 表达增加 60%,表明葡萄糖代谢改变。TAC 导致左心室几何形状和收缩功能迅速变化,同时炎症性巨噬细胞适度浸润。使用 F-FDG PET 成像,代谢重塑掩盖了炎症性白细胞信号。更具选择性的炎症示踪剂是识别压力超负荷中弥漫性局部炎症所必需的。