Zacherl Mathias J, Simenhandra Agus, Lindner Magdalena, Bartenstein Peter, Todica Andrei, Boening Guido, Fischer Maximilian
Department of Nuclear Medicine, Ludwig-Maximilians-University, 81377, Munich, Germany.
Department of Cardiology, Medical Clinic and Polyclinic I, University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany.
EJNMMI Res. 2023 Aug 12;13(1):75. doi: 10.1186/s13550-023-01026-w.
Several software tools have been developed for gated PET imaging that use distinct algorithms to analyze tracer uptake, myocardial perfusion, and left ventricle volumes and function. Studies suggest that different software tools cannot be used interchangeably in humans. In this study, we sought to compare the left ventricular parameters in gated F-FDG PET/CT imaging in mice by three commercially available software tools: PMOD, MIM, and QGS.
Healthy mice underwent ECG-gated F-FDG imaging using a small-animal nanoPET/CT (Mediso) under isoflurane narcosis. Reconstructed gates PET images were subsequently analyzed in three different software tools, and cardiac volume and function (end-diastolic (EDV), end-systolic volumes (ESV), stroke volume (SV), and ejection fraction (EF)) were evaluated. While cardiac volumes correlated well between PMOD, MIM, and QGS, the left ventricular parameters and cardiac function differed in agreement using Bland-Altman analysis. EDV in PMOD vs. QGS: r = 0.85; p < 0.001, MIM vs. QGS: r = 0.92; p < 0.001, and MIM vs. PMOD: r = 0.88; p < 0.001, showed good correlations. Correlation was also found in ESV: PMOD vs. QGS: r = 0.48; p = 0.07, MIM vs QGS: r = 0.79; p < 0.001, and MIM vs. PMOD: r = 0.69; p < 0.01. SV showed good correlations in: PMOD vs. QGS: r = 0.73; p < 0.01, MIM vs. QGS: r = 0.86; p < 0.001, and MIM vs. PMOD: r = 0.92; p < 0.001. However, EF among correlated poorly: PMOD vs. QGS: r = -0.31; p = 0.26, MIM vs. QGS: r = 0.48; p = 0.07, and MIM vs. PMOD: r = 0.23; p = 0.41. Inter-class and intra-class correlation coefficient were > 0.9 underlining repeatability in using PMOD, MIM, and QGS for cardiac volume and function assessment.
All three commercially available software tools are feasible in small animal cardiac volume assessment in gated F-FDG PET/CT imaging. However, due to software-related differences in agreement analysis for cardiac volumes and function, PMOD, MIM, and QGS cannot be used interchangeably in murine research.
已经开发了几种用于门控PET成像的软件工具,这些工具使用不同的算法来分析示踪剂摄取、心肌灌注以及左心室容积和功能。研究表明,不同的软件工具在人体中不能互换使用。在本研究中,我们试图通过三种市售软件工具PMOD、MIM和QGS比较小鼠门控F-FDG PET/CT成像中的左心室参数。
健康小鼠在异氟烷麻醉下使用小动物纳米PET/CT(Mediso)进行心电图门控F-FDG成像。随后在三种不同的软件工具中分析重建的门控PET图像,并评估心脏容积和功能(舒张末期容积(EDV)、收缩末期容积(ESV)、每搏输出量(SV)和射血分数(EF))。虽然PMOD、MIM和QGS之间的心脏容积相关性良好,但使用布兰德-奥特曼分析时,左心室参数和心脏功能存在差异。PMOD与QGS之间的EDV:r = 0.85;p < 0.001,MIM与QGS之间:r = 0.92;p < 0.001,MIM与PMOD之间:r = 0.88;p < 0.001,显示出良好的相关性。ESV也发现相关性:PMOD与QGS之间:r = 0.48;p = 0.07,MIM与QGS之间:r = 0.79;p < 0.001,MIM与PMOD之间:r = 0.69;p < 0.01。SV显示出良好的相关性:PMOD与QGS之间:r = 0.73;p < 0.01,MIM与QGS之间:r = 0.86;p < 0.001,MIM与PMOD之间:r = 0.92;p < 0.001。然而,EF之间相关性较差:PMOD与QGS之间:r = -0.31;p = 0.26,MIM与QGS之间:r = 0.48;p = 0.07,MIM与PMOD之间:r = 0.23;p = 0.41。组间和组内相关系数> 0.9,强调了使用PMOD、MIM和QGS进行心脏容积和功能评估的可重复性。
在门控F-FDG PET/CT成像中,所有三种市售软件工具在小动物心脏容积评估中都是可行的。然而,由于软件在心脏容积和功能一致性分析方面存在差异,在小鼠研究中PMOD、MIM和QGS不能互换使用。