Suppr超能文献

多中介变量的贝叶斯方法:在发电厂排放控制分析中关联主分层与因果中介

BAYESIAN METHODS FOR MULTIPLE MEDIATORS: RELATING PRINCIPAL STRATIFICATION AND CAUSAL MEDIATION IN THE ANALYSIS OF POWER PLANT EMISSION CONTROLS.

作者信息

Kim Chanmin, Daniels Michael J, Hogan Joseph W, Choirat Christine, Zigler Corwin M

机构信息

Boston University School of Public Health.

University of Florida.

出版信息

Ann Appl Stat. 2019 Sep;13(3):1927-1956. doi: 10.1214/19-AOAS1260. Epub 2019 Oct 17.

Abstract

Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution, and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies.

摘要

安装在发电厂的排放控制技术是美国许多空气污染法规的一个关键特征。虽然这些法规基于排放、环境空气污染和人类健康之间的假定关系,但其中许多关系从未得到实证验证。本文的目标是开发新的统计方法来量化这些关系。我们将这个问题构建为中介分析问题,以评估特定控制技术对环境污染的影响在多大程度上是通过对发电厂排放的因果效应来介导的。由于发电厂排放各种导致环境污染的化合物,我们针对同时测量的多个中间变量开发了新方法,这些变量可能相互作用,并可能表现出联合中介效应。具体来说,我们提出了利用两个相关框架进行因果推断的新方法,这两个框架适用于存在中介变量的情况:主分层和因果中介分析。我们基于多个中介定义主效应,并将干预对环境污染的总效应分解为所有中介组合的自然直接效应和自然间接效应。这两种方法都基于相同的观测数据模型,我们用贝叶斯非参数技术来指定这些模型。我们提供了估计主因果效应的假设,然后用因果中介分析所需的一个额外假设对其进行补充。这两种分析相互配合,首次对推动重要空气质量监管政策的假定因果途径进行了实证研究。

相似文献

4
The London low emission zone baseline study.
Res Rep Health Eff Inst. 2011 Nov(163):3-79.
6
Air Pollution and Adverse Pregnancy and Birth Outcomes: Mediation Analysis Using Metabolomic Profiles.
Curr Environ Health Rep. 2020 Sep;7(3):231-242. doi: 10.1007/s40572-020-00284-3.
8
Bayesian nonparametric adjustment of confounding.
Biometrics. 2023 Dec;79(4):3252-3265. doi: 10.1111/biom.13833. Epub 2023 Feb 16.
9
Bayesian inference for causal mediation effects using principal stratification with dichotomous mediators and outcomes.
Biostatistics. 2010 Apr;11(2):353-72. doi: 10.1093/biostatistics/kxp060. Epub 2010 Jan 25.
10
Causal mediation analysis with multiple causally non-ordered mediators.
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.

引用本文的文献

1
Post-hoc mediation analysis of two biomarkers, and survival in acute respiratory distress syndrome.
Sci Rep. 2025 Jul 10;15(1):24935. doi: 10.1038/s41598-025-09598-4.
2
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.
3
Bayesian nonparametric trees for principal causal effects.
Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf024.
4
Bayesian mediation analysis methods to explore racial/ethnic disparities in anxiety among cancer survivors.
Behaviormetrika. 2023 Jan;50(1):361-383. doi: 10.1007/s41237-022-00185-9. Epub 2022 Oct 15.
5
Bayesian Mediation Analysis with an Application to Explore Racial Disparities in the Diagnostic Age of Breast Cancer.
Stats (Basel). 2024 Jun;7(2):361-372. doi: 10.3390/stats7020022. Epub 2024 Apr 19.
6
Bayesian Mediation Analysis for Time-to-Event Outcome: Investigating Racial Disparity in Breast Cancer Survival.
Commun Stat Theory Methods. 2025;54(1):242-258. doi: 10.1080/03610926.2024.2307461. Epub 2024 Feb 8.
7
8
Path-specific causal decomposition analysis with multiple correlated mediator variables.
Stat Med. 2024 Oct 15;43(23):4519-4541. doi: 10.1002/sim.10182. Epub 2024 Aug 7.
9
Policy-induced air pollution health disparities: Statistical and data science considerations.
Science. 2024 Jul 26;385(6707):391-396. doi: 10.1126/science.adp1870. Epub 2024 Jul 25.

本文引用的文献

1
Bayesian inference for causal mechanisms with application to a randomized study for postoperative pain control.
Biostatistics. 2017 Oct 1;18(4):605-617. doi: 10.1093/biostatistics/kxx010.
3
A framework for Bayesian nonparametric inference for causal effects of mediation.
Biometrics. 2017 Jun;73(2):401-409. doi: 10.1111/biom.12575. Epub 2016 Aug 1.
4
Causal mediation analysis with multiple causally non-ordered mediators.
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.
5
Mediation Analysis with Multiple Mediators.
Epidemiol Methods. 2014 Jan;2(1):95-115. doi: 10.1515/em-2012-0010.
6
Causal mediation analysis with multiple mediators.
Biometrics. 2015 Mar;71(1):1-14. doi: 10.1111/biom.12248. Epub 2014 Oct 28.
7
Surrogacy assessment using principal stratification and a Gaussian copula model.
Stat Methods Med Res. 2017 Feb;26(1):88-107. doi: 10.1177/0962280214539655. Epub 2016 Jul 11.
8
Science and regulation. Particulate matter matters.
Science. 2014 Apr 18;344(6181):257-9. doi: 10.1126/science.1247348.
10
Bayesian inference for the causal effect of mediation.
Biometrics. 2012 Dec;68(4):1028-36. doi: 10.1111/j.1541-0420.2012.01781.x. Epub 2012 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验