Suppr超能文献

具有多个相关中介变量的路径特定因果分解分析。

Path-specific causal decomposition analysis with multiple correlated mediator variables.

机构信息

Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama, USA.

Saint Louis University College for Public Health and Social Justice, St. Louis, Missouri, USA.

出版信息

Stat Med. 2024 Oct 15;43(23):4519-4541. doi: 10.1002/sim.10182. Epub 2024 Aug 7.

Abstract

A causal decomposition analysis allows researchers to determine whether the difference in a health outcome between two groups can be attributed to a difference in each group's distribution of one or more modifiable mediator variables. With this knowledge, researchers and policymakers can focus on designing interventions that target these mediator variables. Existing methods for causal decomposition analysis either focus on one mediator variable or assume that each mediator variable is conditionally independent given the group label and the mediator-outcome confounders. In this article, we propose a flexible causal decomposition analysis method that can accommodate multiple correlated and interacting mediator variables, which are frequently seen in studies of health behaviors and studies of environmental pollutants. We extend a Monte Carlo-based causal decomposition analysis method to this setting by using a multivariate mediator model that can accommodate any combination of binary and continuous mediator variables. Furthermore, we state the causal assumptions needed to identify both joint and path-specific decomposition effects through each mediator variable. To illustrate the reduction in bias and confidence interval width of the decomposition effects under our proposed method, we perform a simulation study. We also apply our approach to examine whether differences in smoking status and dietary inflammation score explain any of the Black-White differences in incident diabetes using data from a national cohort study.

摘要

因果分解分析允许研究人员确定两组之间健康结果的差异是否可以归因于两组中一个或多个可调节中介变量的分布差异。有了这些知识,研究人员和政策制定者可以专注于设计针对这些中介变量的干预措施。现有的因果分解分析方法要么专注于一个中介变量,要么假设每个中介变量在给定组标签和中介-结果混杂因素的情况下是条件独立的。在本文中,我们提出了一种灵活的因果分解分析方法,可以适应多个相关和相互作用的中介变量,这些变量在健康行为研究和环境污染物研究中经常出现。我们通过使用可以容纳任何组合的二进制和连续中介变量的多变量中介模型,将基于蒙特卡罗的因果分解分析方法扩展到这种情况。此外,我们说明了通过每个中介变量识别联合和路径特定分解效应所需的因果假设。为了说明我们提出的方法下分解效应的偏差和置信区间宽度的减少,我们进行了模拟研究。我们还应用我们的方法来检查吸烟状况和饮食炎症评分的差异是否可以解释来自全国队列研究的数据中黑人和白人之间发生糖尿病的差异。

相似文献

2
G-computation demonstration in causal mediation analysis.因果中介分析中的G计算演示。
Eur J Epidemiol. 2015 Oct;30(10):1119-27. doi: 10.1007/s10654-015-0100-z. Epub 2015 Nov 4.

本文引用的文献

3
Pathway-specific population attributable fractions.特定通路的人群归因分数。
Int J Epidemiol. 2022 Dec 13;51(6):1957-1969. doi: 10.1093/ije/dyac079.
5
Bayesian Causal Mediation Analysis with Multiple Ordered Mediators.具有多个有序中介变量的贝叶斯因果中介分析
Stat Modelling. 2019 Dec 1;19(6):634-652. doi: 10.1177/1471082x18798067. Epub 2018 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验