Suppr超能文献

核糖体速度的减缓可恢复突变 CFTR 的折叠和功能。

Slowing ribosome velocity restores folding and function of mutant CFTR.

机构信息

Emory University School of Medicine, Atlanta, Georgia, USA.

Institute for Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany.

出版信息

J Clin Invest. 2019 Dec 2;129(12):5236-5253. doi: 10.1172/JCI124282.

Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity. Using ribosome profiling, we found that rates of translation initiation and elongation were markedly slowed by RPL12 silencing. However, proteolytic stability and patch-clamp assays revealed RPL12 depletion significantly increased F508del-CFTR steady-state expression, interdomain assembly, and baseline open-channel probability. We next evaluated whether Rpl12-corrected F508del-CFTR could be further enhanced with concomitant pharmacologic repair (e.g., using clinically approved modulators lumacaftor and tezacaftor) and demonstrated additivity of these treatments. Rpl12 knockdown also partially restored maturation of specific CFTR variants in addition to F508del, and WT Cftr biogenesis was enhanced in the pancreas, colon, and ileum of Rpl12 haplosufficient mice. Modulation of ribosome velocity therefore represents a robust method for understanding both CF pathogenesis and therapeutic response.

摘要

囊性纤维化 (CF) 是由 CF 跨膜电导调节因子 (CFTR) 的突变引起的,大约 90%的患者至少携带一个与疾病相关的变体 F508del。我们利用酵母表型系统来鉴定 F508del-CFTR 生物发生的遗传修饰因子,其中核糖体蛋白 L12 (RPL12/uL11) 作为一个分子靶标脱颖而出。在本研究中,我们研究了抑制 RPL12 可挽救 F508del 蛋白合成和活性的机制。通过核糖体谱分析,我们发现 RPL12 沉默显著减缓了翻译起始和延伸的速度。然而,蛋白酶体稳定性和膜片钳检测显示 RPL12 耗竭显著增加了 F508del-CFTR 的稳定表达、域间组装和基础开放通道概率。我们接下来评估了 Rpl12 校正的 F508del-CFTR 是否可以通过同时进行药理学修复 (例如,使用临床批准的调节剂 lumacaftor 和 tezacaftor) 进一步增强,并证明这些治疗方法具有相加性。Rpl12 敲低还部分恢复了除 F508del 以外的特定 CFTR 变体的成熟,并且 Rpl12 杂合子小鼠的胰腺、结肠和回肠中的 WT Cftr 生物发生也得到了增强。因此,调节核糖体速度是理解 CF 发病机制和治疗反应的一种有效方法。

相似文献

1
Slowing ribosome velocity restores folding and function of mutant CFTR.
J Clin Invest. 2019 Dec 2;129(12):5236-5253. doi: 10.1172/JCI124282.
2
Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.
PLoS Biol. 2016 May 11;14(5):e1002462. doi: 10.1371/journal.pbio.1002462. eCollection 2016 May.
6
Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR.
Biochem Pharmacol. 2020 Oct;180:114133. doi: 10.1016/j.bcp.2020.114133. Epub 2020 Jul 3.
7
Measurements of Functional Responses in Human Primary Lung Cells as a Basis for Personalized Therapy for Cystic Fibrosis.
EBioMedicine. 2014 Dec 17;2(2):147-53. doi: 10.1016/j.ebiom.2014.12.005. eCollection 2015.
8
Correcting the F508del-CFTR variant by modulating eukaryotic translation initiation factor 3-mediated translation initiation.
J Biol Chem. 2018 Aug 31;293(35):13477-13495. doi: 10.1074/jbc.RA118.003192. Epub 2018 Jul 13.
9
Lumacaftor-rescued F508del-CFTR has a modified bicarbonate permeability.
J Cyst Fibros. 2019 Sep;18(5):602-605. doi: 10.1016/j.jcf.2019.01.012. Epub 2019 Feb 7.

引用本文的文献

1
Recent developments in cystic fibrosis drug discovery: where are we today?
Expert Opin Drug Discov. 2025 May;20(5):659-682. doi: 10.1080/17460441.2025.2490250. Epub 2025 Apr 13.
2
Ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2414768121. doi: 10.1073/pnas.2414768121. Epub 2024 Oct 10.
4
Mutation accumulation in H. sapiens F508del CFTR countermands dN/dS type genomic analysis.
PLoS One. 2024 Jul 18;19(7):e0305832. doi: 10.1371/journal.pone.0305832. eCollection 2024.
8
Features of CFTR mRNA and implications for therapeutics development.
Front Genet. 2023 Apr 24;14:1166529. doi: 10.3389/fgene.2023.1166529. eCollection 2023.
10
Gain- and Loss-of-Function Alleles Are Associated with COVID-19 Clinical Outcomes.
Cells. 2022 Dec 16;11(24):4096. doi: 10.3390/cells11244096.

本文引用的文献

1
Animal Models in the Pathophysiology of Cystic Fibrosis.
Front Pharmacol. 2019 Jan 4;9:1475. doi: 10.3389/fphar.2018.01475. eCollection 2018.
2
Folding-function relationship of the most common cystic fibrosis-causing CFTR conductance mutants.
Life Sci Alliance. 2019 Jan 18;2(1). doi: 10.26508/lsa.201800172. Print 2019 Feb.
4
Correcting CFTR folding defects by small-molecule correctors to cure cystic fibrosis.
Curr Opin Pharmacol. 2017 Jun;34:83-90. doi: 10.1016/j.coph.2017.09.014. Epub 2017 Oct 18.
5
Transformative therapies for rare CFTR missense alleles.
Curr Opin Pharmacol. 2017 Jun;34:76-82. doi: 10.1016/j.coph.2017.09.018. Epub 2017 Oct 13.
7
Alteration of protein function by a silent polymorphism linked to tRNA abundance.
PLoS Biol. 2017 May 16;15(5):e2000779. doi: 10.1371/journal.pbio.2000779. eCollection 2017 May.
8
Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR.
Biochem Pharmacol. 2017 Jul 15;136:24-31. doi: 10.1016/j.bcp.2017.03.020. Epub 2017 Mar 31.
9
Vardenafil reduces macrophage pro-inflammatory overresponses in cystic fibrosis through PDE5- and CFTR-dependent mechanisms.
Clin Sci (Lond). 2017 Jun 1;131(11):1107-1121. doi: 10.1042/CS20160749. Epub 2017 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验