From the Departments of Molecular Medicine and.
Integrative Structural and Computational Biology and.
J Biol Chem. 2018 Aug 31;293(35):13477-13495. doi: 10.1074/jbc.RA118.003192. Epub 2018 Jul 13.
Inherited and somatic rare diseases result from >200,000 genetic variants leading to loss- or gain-of-toxic function, often caused by protein misfolding. Many of these misfolded variants fail to properly interact with other proteins. Understanding the link between factors mediating the transcription, translation, and protein folding of these disease-associated variants remains a major challenge in cell biology. Herein, we utilized the cystic fibrosis transmembrane conductance regulator (CFTR) protein as a model and performed a proteomics-based high-throughput screen (HTS) to identify pathways and components affecting the folding and function of the most common cystic fibrosis-associated mutation, the F508del variant of CFTR. Using a shortest-path algorithm we developed, we mapped HTS hits to the CFTR interactome to provide functional context to the targets and identified the eukaryotic translation initiation factor 3a (eIF3a) as a central hub for the biogenesis of CFTR. Of note, siRNA-mediated silencing of eIF3a reduced the polysome-to-monosome ratio in F508del-expressing cells, which, in turn, decreased the translation of CFTR variants, leading to increased CFTR stability, trafficking, and function at the cell surface. This finding suggested that eIF3a is involved in mediating the impact of genetic variations in CFTR on the folding of this protein. We posit that the number of ribosomes on a CFTR mRNA transcript is inversely correlated with the stability of the translated polypeptide. Polysome-based translation challenges the capacity of the proteostasis environment to balance message fidelity with protein folding, leading to disease. We suggest that this deficit can be corrected through control of translation initiation.
遗传性和体细胞罕见疾病是由超过 200,000 种导致毒性功能丧失或获得的遗传变异引起的,这些变异通常是由蛋白质错误折叠引起的。这些错误折叠的变体中有许多不能与其他蛋白质正确相互作用。了解介导这些与疾病相关的变体转录、翻译和蛋白质折叠的因素之间的联系仍然是细胞生物学中的一个主要挑战。在此,我们利用囊性纤维化跨膜电导调节蛋白 (CFTR) 作为模型,并进行了基于蛋白质组学的高通量筛选 (HTS),以鉴定影响最常见的囊性纤维化相关突变(CFTR 的 F508del 变体)折叠和功能的途径和成分。我们使用开发的最短路径算法,将 HTS 命中映射到 CFTR 相互作用组,为靶标提供功能背景,并确定真核翻译起始因子 3a (eIF3a) 是 CFTR 生物发生的中心枢纽。值得注意的是,siRNA 介导的 eIF3a 沉默降低了表达 F508del 的细胞中的多核糖体-单核糖体比率,这反过来又降低了 CFTR 变体的翻译,导致细胞表面 CFTR 的稳定性、运输和功能增加。这一发现表明,eIF3a 参与介导 CFTR 遗传变异对该蛋白折叠的影响。我们假设 CFTR mRNA 转录本上的核糖体数量与翻译多肽的稳定性成反比。基于多核糖体的翻译对蛋白质折叠的稳定性与信息保真度之间的平衡提出了挑战,从而导致疾病。我们认为可以通过控制翻译起始来纠正这种缺陷。