Suppr超能文献

通过原位外延异质界面实现传输动力学增强的亚厚电极用于高面积容量锂离子电池

Sub-Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal-Capacity Lithium Ion Batteries.

作者信息

Zhou Shuhui, Huang Peng, Xiong Tuzhi, Yang Fang, Yang Hao, Huang Yongchao, Li Dong, Deng Jianqiu, Balogun M-Sadeeq Jie Tang

机构信息

College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, China.

School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China.

出版信息

Small. 2021 Jul;17(26):e2100778. doi: 10.1002/smll.202100778. Epub 2021 May 31.

Abstract

The ever-growing portable electronics and electric vehicle draws the attention of scaling up of energy storage systems with high areal-capacity. The concept of thick electrode designs has been used to improve the active mass loading toward achieving high overall energy density. However, the poor rate capabilities of electrode material owing to increasing electrode thickness significantly affect the rapid transportation of ionic and electron diffusion kinetics. Herein, a new concept named "sub-thick electrodes" is successfully introduced to mitigate the Li-ion storage performance of electrodes. This is achieved by using commercial nickel foam (NF) to develop a monolithic 3D with rich in situ heterogeneous interfaces anode (Cu P-Ni P-NiO, denoted NF-CNNOP) to reinforce the adhesive force of the active materials on NF as well as contribute additional capacity to the electrode. The as-prepared NF-CNNOP electrode displays high reversible and rate areal capacities of 6.81 and 1.50 mAh cm at 0.40 and 6.0 mA cm , respectively. The enhanced Li-ion storage capability is attributed to the in situ interfacial engineering within the NiO, Ni P, and Cu P and the 3D consecutive electron conductive network. In addition, cyclic voltammetry, charge-discharge curves, and symmetric cell electrochemical impedance spectroscopy consistently reveal improved pseudocapacitance with enhanced transports kinetics in this sub-thick electrodes.

摘要

不断增长的便携式电子产品和电动汽车引发了对扩大高面积容量储能系统的关注。厚电极设计的概念已被用于提高活性物质负载量,以实现高整体能量密度。然而,由于电极厚度增加导致电极材料倍率性能较差,这显著影响了离子和电子扩散动力学的快速传输。在此,成功引入了一种名为“亚厚电极”的新概念,以减轻电极的锂离子存储性能。这是通过使用商业泡沫镍(NF)来开发一种具有丰富原位异质界面的整体式3D阳极(Cu P-Ni P-NiO,记为NF-CNNOP)来实现的,以增强活性材料在NF上的附着力,并为电极贡献额外的容量。所制备的NF-CNNOP电极在0.40和6.0 mA cm时分别显示出6.81和1.50 mAh cm的高可逆面积容量和倍率面积容量。锂离子存储能力的增强归因于NiO、Ni P和Cu P内部的原位界面工程以及3D连续电子导电网络。此外,循环伏安法、充放电曲线和对称电池电化学阻抗谱一致显示,在这种亚厚电极中,赝电容得到改善,传输动力学增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验