Li Haoran, Wu Zhitan, Liu Xiaochen, Lu Haotian, Zhang Weichao, Li Fangbing, Yu Hongyuan, Yu Jinyang, Zhang Boya, Xiong Zhenxin, Tao Ying, Yang Quan-Hong
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
Natl Sci Rev. 2024 Jun 14;11(8):nwae207. doi: 10.1093/nsr/nwae207. eCollection 2024 Aug.
Thickening of electrodes is crucial for maximizing the proportion of active components and thus improving the energy density of practical energy storage cells. Nevertheless, trade-offs between electrode thickness and electrochemical performance persist because of the considerably increased ion transport resistance of thick electrodes. Herein, we propose accelerating ion transport through thick and dense electrodes by establishing an immobile polyanionic backbone within the electrode pores; and as a proof of concept, gel polyacrylic electrolytes as such a backbone are synthesized for supercapacitors. During charge and discharge, protons rapidly hop among RCOO sites for oriented transport, fundamentally reducing the effects of electrode tortuosity and polarization resulting from concentration gradients. Consequently, nearly constant ion transport resistance per unit thickness is achieved, even in the case of a 900-μm-thick dense electrode, leading to unprecedented areal capacitances of 14.85 F cm at 1 mA cm and 4.26 F cm at 100 mA cm. This study provides an efficient method for accelerating ion transport through thick and dense electrodes, indicating a significant solution for achieving high energy density in energy storage devices, including but not limited to supercapacitors.
电极的增厚对于最大化活性成分的比例从而提高实际储能电池的能量密度至关重要。然而,由于厚电极的离子传输电阻显著增加,电极厚度与电化学性能之间的权衡仍然存在。在此,我们提出通过在电极孔隙内建立固定的聚阴离子骨架来加速离子通过厚且致密电极的传输;作为概念验证,合成了作为这种骨架的凝胶聚丙烯酸电解质用于超级电容器。在充电和放电过程中,质子在RCOO位点之间快速跳跃以进行定向传输,从根本上减少了由浓度梯度引起的电极曲折度和极化的影响。因此,即使在900μm厚的致密电极的情况下,也能实现每单位厚度几乎恒定的离子传输电阻,在1 mA cm时导致前所未有的面积电容为14.85 F cm,在100 mA cm时为4.26 F cm。本研究提供了一种加速离子通过厚且致密电极传输的有效方法,为在包括但不限于超级电容器的储能装置中实现高能量密度指明了一个重要的解决方案。