Adaptive Immunity Laboratory (E.M., M.C., M.K.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
Bioinformatics Unit (P.K., R.C., A.T.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
Circulation. 2019 Dec 17;140(25):2089-2107. doi: 10.1161/CIRCULATIONAHA.119.041694. Epub 2019 Oct 30.
Inflammation is a key component of cardiac disease, with macrophages and T lymphocytes mediating essential roles in the progression to heart failure. Nonetheless, little insight exists on other immune subsets involved in the cardiotoxic response.
Here, we used single-cell RNA sequencing to map the cardiac immune composition in the standard murine nonischemic, pressure-overload heart failure model. By focusing our analysis on CD45 cells, we obtained a higher resolution identification of the immune cell subsets in the heart, at early and late stages of disease and in controls. We then integrated our findings using multiparameter flow cytometry, immunohistochemistry, and tissue clarification immunofluorescence in mouse and human.
We found that most major immune cell subpopulations, including macrophages, B cells, T cells and regulatory T cells, dendritic cells, Natural Killer cells, neutrophils, and mast cells are present in both healthy and diseased hearts. Most cell subsets are found within the myocardium, whereas mast cells are found also in the epicardium. Upon induction of pressure overload, immune activation occurs across the entire range of immune cell types. Activation led to upregulation of key subset-specific molecules, such as oncostatin M in proinflammatory macrophages and PD-1 in regulatory T cells, that may help explain clinical findings such as the refractivity of patients with heart failure to anti-tumor necrosis factor therapy and cardiac toxicity during anti-PD-1 cancer immunotherapy, respectively.
Despite the absence of infectious agents or an autoimmune trigger, induction of disease leads to immune activation that involves far more cell types than previously thought, including neutrophils, B cells, Natural Killer cells, and mast cells. This opens up the field of cardioimmunology to further investigation by using toolkits that have already been developed to study the aforementioned immune subsets. The subset-specific molecules that mediate their activation may thus become useful targets for the diagnostics or therapy of heart failure.
炎症是心脏病的一个关键组成部分,巨噬细胞和 T 淋巴细胞在心力衰竭的进展中发挥着重要作用。然而,对于参与心脏毒性反应的其他免疫亚群,人们知之甚少。
在这里,我们使用单细胞 RNA 测序来绘制标准的非缺血性、压力超负荷心力衰竭小鼠模型中的心脏免疫组成。通过将我们的分析集中在 CD45 细胞上,我们在疾病的早期和晚期以及对照中获得了对心脏中免疫细胞亚群的更高分辨率的识别。然后,我们使用多参数流式细胞术、免疫组织化学和小鼠和人类的组织澄清免疫荧光来整合我们的发现。
我们发现,包括巨噬细胞、B 细胞、T 细胞和调节性 T 细胞、树突状细胞、自然杀伤细胞、中性粒细胞和肥大细胞在内的大多数主要免疫细胞亚群都存在于健康和患病的心脏中。大多数细胞亚群都存在于心肌中,而肥大细胞也存在于心外膜中。在诱导压力超负荷后,整个免疫细胞类型范围内都会发生免疫激活。激活导致关键亚群特异性分子的上调,例如促炎巨噬细胞中的肿瘤坏死因子 M 和调节性 T 细胞中的 PD-1,这可能有助于解释临床发现,例如心力衰竭患者对肿瘤坏死因子治疗的抵抗力和抗 PD-1 癌症免疫治疗中的心脏毒性。
尽管没有感染因子或自身免疫触发,疾病的诱导导致了免疫激活,涉及的细胞类型远比以前认为的要多,包括中性粒细胞、B 细胞、自然杀伤细胞和肥大细胞。这为心脏免疫生物学领域开辟了进一步研究的途径,可以使用已经开发用于研究上述免疫亚群的工具包。介导其激活的亚群特异性分子因此可能成为心力衰竭诊断或治疗的有用靶点。