College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, 215006, Suzhou, P. R. China.
College Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
Nat Commun. 2019 Oct 29;10(1):4913. doi: 10.1038/s41467-019-12900-4.
Wearable and portable self-powered units have stimulated considerable attention in both the scientific and technological realms. However, their innovative development is still limited by inefficient bulky connections between functional modules, incompatible energy storage systems with poor cycling stability, and real safety concerns. Herein, we demonstrate a flexible solar-charging integrated unit based on the design of printed magnesium ion aqueous asymmetric supercapacitors. This power unit exhibits excellent mechanical robustness, high photo-charging cycling stability (98.7% capacitance retention after 100 cycles), excellent overall energy conversion and storage efficiency (η = 17.57%), and outstanding input current tolerance. In addition, the Mg ion quasi-solid-state asymmetric supercapacitors show high energy density up to 13.1 mWh cm via pseudocapacitive ion storage as investigated by an operando X-ray diffraction technique. The findings pave a practical route toward the design of future self-powered systems affording favorable safety, long life, and high energy.
可穿戴式和便携式自供电设备在科学和技术领域引起了相当大的关注。然而,它们的创新性发展仍然受到功能模块之间效率低下的庞大连接、循环稳定性差的不兼容储能系统以及实际安全问题的限制。在此,我们展示了一种基于印刷镁离子水系不对称超级电容器设计的柔性太阳能充电集成单元。该动力单元具有出色的机械鲁棒性、高光电充电循环稳定性(100 次循环后电容保持率为 98.7%)、优异的整体能量转换和存储效率(η=17.57%)以及出色的输入电流容忍度。此外,通过原位 X 射线衍射技术研究,Mg 离子准固态不对称超级电容器通过赝电容离子存储显示出高达 13.1 mWh cm 的高能量密度。这些发现为设计未来具有良好安全性、长寿命和高能量的自供电系统铺平了道路。