Suppr超能文献

城市指纹:区分地铁微生物组功能。

Fingerprinting cities: differentiating subway microbiome functionality.

机构信息

Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA.

Computational Biology & Bioinformatics - i12 Informatics, Technical University of Munich (TUM), Boltzmannstrasse 3, 85748, Garching/Munich, Germany.

出版信息

Biol Direct. 2019 Oct 30;14(1):19. doi: 10.1186/s13062-019-0252-y.

Abstract

BACKGROUND

Accumulating evidence suggests that the human microbiome impacts individual and public health. City subway systems are human-dense environments, where passengers often exchange microbes. The MetaSUB project participants collected samples from subway surfaces in different cities and performed metagenomic sequencing. Previous studies focused on taxonomic composition of these microbiomes and no explicit functional analysis had been done till now.

RESULTS

As a part of the 2018 CAMDA challenge, we functionally profiled the available ~ 400 subway metagenomes and built predictor for city origin. In cross-validation, our model reached 81% accuracy when only the top-ranked city assignment was considered and 95% accuracy if the second city was taken into account as well. Notably, this performance was only achievable if the similarity of distribution of cities in the training and testing sets was similar. To assure that our methods are applicable without such biased assumptions we balanced our training data to account for all represented cities equally well. After balancing, the performance of our method was slightly lower (76/94%, respectively, for one or two top ranked cities), but still consistently high. Here we attained an added benefit of independence of training set city representation. In testing, our unbalanced model thus reached (an over-estimated) performance of 90/97%, while our balanced model was at a more reliable 63/90% accuracy. While, by definition of our model, we were not able to predict the microbiome origins previously unseen, our balanced model correctly judged them to be NOT-from-training-cities over 80% of the time. Our function-based outlook on microbiomes also allowed us to note similarities between both regionally close and far-away cities. Curiously, we identified the depletion in mycobacterial functions as a signature of cities in New Zealand, while photosynthesis related functions fingerprinted New York, Porto and Tokyo.

CONCLUSIONS

We demonstrated the power of our high-speed function annotation method, mi-faser, by analysing ~ 400 shotgun metagenomes in 2 days, with the results recapitulating functional signals of different city subway microbiomes. We also showed the importance of balanced data in avoiding over-estimated performance. Our results revealed similarities between both geographically close (Ofa and Ilorin) and distant (Boston and Porto, Lisbon and New York) city subway microbiomes. The photosynthesis related functional signatures of NYC were previously unseen in taxonomy studies, highlighting the strength of functional analysis.

摘要

背景

越来越多的证据表明,人类微生物组会影响个人和公共健康。城市地铁系统是人员密集的环境,乘客经常在此交换微生物。MetaSUB 项目参与者从不同城市的地铁表面采集样本,并进行宏基因组测序。之前的研究主要集中在这些微生物组的分类组成上,直到现在还没有进行明确的功能分析。

结果

作为 2018 年 CAMDA 挑战赛的一部分,我们对现有的约 400 个地铁宏基因组进行了功能分析,并构建了用于城市来源预测的模型。在交叉验证中,如果只考虑排名最高的城市分配,我们的模型达到了 81%的准确率,如果同时考虑排名第二的城市,准确率达到了 95%。值得注意的是,如果训练集和测试集的城市分布相似,这种性能才是可以实现的。为了确保我们的方法在没有这种有偏差的假设的情况下也能适用,我们对训练数据进行了平衡处理,以平等地考虑所有代表城市。在平衡之后,我们的方法的性能略有下降(对于一个或两个排名最高的城市,分别为 76/94%),但仍然保持较高水平。在这里,我们获得了训练集城市代表性独立性的额外好处。在测试中,我们不平衡的模型因此达到了(高估的)90/97%的性能,而我们平衡的模型则达到了更可靠的 63/90%的准确性。虽然根据我们模型的定义,我们无法预测以前未见过的微生物组起源,但我们平衡的模型有超过 80%的时间正确判断它们不是来自训练城市。我们对微生物组的基于功能的观点还使我们注意到了区域上接近和遥远的城市之间的相似之处。有趣的是,我们发现,分枝杆菌功能的缺失是新西兰城市微生物组的一个特征,而与光合作用有关的功能则为纽约、波尔图和东京打上了指纹。

结论

我们通过在两天内分析约 400 个 shotgun 宏基因组,展示了我们高速功能注释方法 mi-faser 的强大功能,结果再现了不同城市地铁微生物组的功能信号。我们还表明了在避免高估性能方面平衡数据的重要性。我们的结果揭示了地理上接近(奥法和伊洛林)和遥远(波士顿和波尔图、里斯本和纽约)城市地铁微生物组之间的相似性。之前在分类学研究中没有见过与光合作用有关的纽约市功能特征,这凸显了功能分析的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fe/6822482/568cb3bcf980/13062_2019_252_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验