Department of Information Science, College of Computing and Informatics, Drexel University, Philadelphia, Pennsylvania, United States of America.
Department of Information Science, Yonsei University, Seoul, Republic of Korea.
PLoS One. 2019 Oct 31;14(10):e0223994. doi: 10.1371/journal.pone.0223994. eCollection 2019.
Systematic scientometric reviews, empowered by computational and visual analytic approaches, offer opportunities to improve the timeliness, accessibility, and reproducibility of studies of the literature of a field of research. On the other hand, effectively and adequately identifying the most representative body of scholarly publications as the basis of subsequent analyses remains a common bottleneck in the current practice. What can we do to reduce the risk of missing something potentially significant? How can we compare different search strategies in terms of the relevance and specificity of topical areas covered? In this study, we introduce a flexible and generic methodology based on a significant extension of the general conceptual framework of citation indexing for delineating the literature of a research field. The method, through cascading citation expansion, provides a practical connection between studies of science from local and global perspectives. We demonstrate an application of the methodology to the research of literature-based discovery (LBD) and compare five datasets constructed based on three use scenarios and corresponding retrieval strategies, namely a query-based lexical search (one dataset), forward expansions starting from a groundbreaking article of LBD (two datasets), and backward expansions starting from a recently published review article by a prominent expert in LBD (two datasets). We particularly discuss the relevance of areas captured by expansion processes with reference to the query-based scientometric visualization. The method used in this study for comparing bibliometric datasets is applicable to comparative studies of search strategies.
系统的科学计量学综述,借助计算和可视化分析方法,为提高研究领域文献研究的及时性、可及性和可重复性提供了机会。另一方面,有效地、充分地识别出最具代表性的学术出版物群体作为后续分析的基础,这在当前实践中仍然是一个常见的瓶颈。我们能做些什么来降低错过潜在重要内容的风险呢?我们如何根据涵盖的主题领域的相关性和特异性来比较不同的搜索策略呢?在本研究中,我们介绍了一种灵活和通用的方法,该方法基于对引文索引一般概念框架的重要扩展,用于描绘研究领域的文献。该方法通过级联引文扩展,为从本地和全球角度研究科学提供了实际联系。我们将该方法应用于基于文献的发现(LBD)的研究,并比较了基于三个使用场景和相应检索策略构建的五个数据集,即基于查询的词汇搜索(一个数据集)、从 LBD 的开创性文章开始的正向扩展(两个数据集),以及从 LBD 知名专家最近发表的综述文章开始的反向扩展(两个数据集)。我们特别讨论了扩展过程中捕获的区域与基于查询的科学计量可视化的相关性。本研究中用于比较书目数据集的方法可应用于搜索策略的比较研究。
Expert Opin Biol Ther. 2014-9
Scientometrics. 2023
Rev Lat Am Enfermagem. 2018-9-3
Pharmacotherapy. 2015-6
Medicine (Baltimore). 2025-8-29
J Multidiscip Healthc. 2025-8-21
Front Cell Neurosci. 2025-8-1
J Alzheimers Dis Rep. 2025-8-13
Naunyn Schmiedebergs Arch Pharmacol. 2025-8-12
Front Neurol. 2025-7-23
Front Psychiatry. 2025-7-23
PLoS One. 2019-4-24
Proc Natl Acad Sci U S A. 2018-9-28
J Data Inf Sci. 2017-12
PLoS One. 2016-7-29
Brief Bioinform. 2017-5-1
PLoS One. 2016-1-14
PLoS One. 2012-7-12
Expert Opin Biol Ther. 2012-3-25
Scientometrics. 2010-8