Ornelas Isabel M, Unwin Patrick R, Bentley Cameron L
Nanoscale Physics Research Laboratory , University of Birmingham , Birmingham B15 2TT , United Kingdom.
Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom.
Anal Chem. 2019 Dec 3;91(23):14854-14859. doi: 10.1021/acs.analchem.9b04028. Epub 2019 Nov 13.
As part of the revolution in electrochemical nanoscience, there is growing interest in using electrochemistry to create nanostructured materials and to assess properties at the nanoscale. Herein, we present a platform that combines scanning electrochemical cell microscopy with ex situ scanning transmission electron microscopy to allow the ready creation of an array of nanostructures coupled with atomic-scale analysis. As an illustrative example, we explore the electrodeposition of Pt at carbon-coated transmission electron microscopy (TEM) grid supports, where in a single high-throughput experiment it is shown that Pt nanoparticle (PtNP) density increases and size polydispersity decreases with increasing overpotential (i.e., driving force). Furthermore, the coexistence of a range of nanostructures, from single atoms to aggregates of crystalline PtNPs, during the early stages of electrochemical nucleation and growth supports a nonclassical aggregative growth mechanism. Beyond this exemplary system, the presented correlative electrochemistry-microscopy approach is generally applicable to solve ubiquitous structure-function problems in electrochemical science and beyond, positioning it as a powerful platform for the rational design of functional nanomaterials.
作为电化学纳米科学革命的一部分,利用电化学来制备纳米结构材料并评估纳米尺度的性质正引发越来越多的关注。在此,我们展示了一个平台,该平台将扫描电化学池显微镜与非原位扫描透射电子显微镜相结合,以便能够轻松创建一系列纳米结构并进行原子尺度分析。作为一个示例,我们研究了在碳包覆的透射电子显微镜(TEM)网格载体上铂的电沉积过程,在单个高通量实验中表明,随着过电位(即驱动力)的增加,铂纳米颗粒(PtNP)密度增加且尺寸多分散性降低。此外,在电化学成核和生长的早期阶段,从单原子到结晶PtNP聚集体等一系列纳米结构的共存支持了一种非经典的聚集生长机制。除了这个示例性系统外,所展示的相关电化学 - 显微镜方法通常适用于解决电化学科学及其他领域中普遍存在的结构 - 功能问题,使其成为功能纳米材料合理设计的强大平台。