Hussein Haytham E M, Wood Georgia, Houghton Daniel, Walker Marc, Han Yisong, Zhao Pei, Beanland Richard, Macpherson Julie V
Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
Diamond Science and Technology Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, U.K.
ACS Meas Sci Au. 2022 Oct 19;2(5):439-448. doi: 10.1021/acsmeasuresciau.2c00027. Epub 2022 Jul 14.
The majority of carbon based transmission electron microscopy (TEM) platforms (grids) have a significant sp carbon component. Here, we report a top down fabrication technique for producing freestanding, robust, electron beam transparent and conductive sp carbon substrates from boron doped diamond (BDD) using an ion milling/polishing process. X-ray photoelectron spectroscopy and electrochemical measurements reveal the sp carbon character and advantageous electrochemical properties of a BDD electrode are retained during the milling process. TEM diffraction studies show a dominant (110) crystallographic orientation. Compared with conventional carbon TEM films on metal supports, the BDD-TEM electrodes offer superior thermal, mechanical and electrochemical stability properties. For the latter, no carbon loss is observed over a wide electrochemical potential range (up to 1.80 V RHE) under prolonged testing times (5 h) in acid (comparable with accelerated stress testing protocols). This result also highlights the use of BDD as a corrosion free electrocatalyst TEM support for fundamental studies, and in practical energy conversion applications. High magnification TEM imaging demonstrates resolution of isolated, single atoms on the BDD-TEM electrode during electrodeposition, due to the low background electron scattering of the BDD surface. Given the high thermal conductivity and stability of the BDD-TEM electrodes, monitoring of thermally induced morphological changes is also possible, shown here for the thermally induced crystallization of amorphous electrodeposited manganese oxide to the electrochemically active γ-phase.
大多数基于碳的透射电子显微镜(TEM)平台(网格)都含有大量的sp碳成分。在此,我们报告了一种自上而下的制造技术,通过离子铣削/抛光工艺,从硼掺杂金刚石(BDD)制备出独立、坚固、电子束透明且导电的sp碳基底。X射线光电子能谱和电化学测量结果表明,在铣削过程中,BDD电极的sp碳特性和有利的电化学性能得以保留。TEM衍射研究显示出主要的(110)晶体取向。与金属支撑体上的传统碳TEM薄膜相比,BDD-TEM电极具有卓越的热、机械和电化学稳定性。对于后者,在酸性环境中长时间测试(5小时)(与加速应力测试协议相当)的宽电化学电位范围(高达1.80 V RHE)内,未观察到碳损失。这一结果还突出了BDD作为一种无腐蚀电催化剂TEM支撑体在基础研究和实际能量转换应用中的用途。高倍率TEM成像表明,由于BDD表面的低背景电子散射,在电沉积过程中BDD-TEM电极上能分辨出孤立的单原子。鉴于BDD-TEM电极具有高导热性和稳定性,还能够监测热诱导的形态变化,此处展示了非晶态电沉积氧化锰热诱导结晶为电化学活性γ相的过程。