Earth System Science Department, Stanford University, Stanford, CA, 94305, USA.
Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany.
Nat Commun. 2019 Nov 1;10(1):4985. doi: 10.1038/s41467-019-12946-4.
Projections of global rice yields account for climate change. They do not, however, consider the coupled stresses of impending climate change and arsenic in paddy soils. Here, we show in a greenhouse study that future conditions cause a greater proportion of pore-water arsenite, the more toxic form of arsenic, in the rhizosphere of Californian Oryza sativa L. variety M206, grown on Californian paddy soil. As a result, grain yields decrease by 39% compared to yields at today's arsenic soil concentrations. In addition, future climatic conditions cause a nearly twofold increase of grain inorganic arsenic concentrations. Our findings indicate that climate-induced changes in soil arsenic behaviour and plant response will lead to currently unforeseen losses in rice grain productivity and quality. Pursuing rice varieties and crop management practices that alleviate the coupled stresses of soil arsenic and change in climatic factors are needed to overcome the currently impending food crisis.
对全球稻米产量的预估考虑到了气候变化因素。然而,这些预估并未考虑到即将发生的气候变化和稻田土壤中砷的双重压力。在这里,我们在温室研究中表明,未来的条件会导致加利福尼亚稻种 M206 的根际中更多的亚砷酸盐(砷的毒性更强的形式)进入孔隙水,而这种稻种生长在加利福尼亚的稻田土壤上。因此,与当今砷土壤浓度下的产量相比,稻谷产量下降了 39%。此外,未来的气候条件会导致谷物无机砷浓度增加近两倍。我们的研究结果表明,土壤砷行为和植物反应的气候诱导变化将导致稻米产量和质量目前尚未预料到的损失。需要寻求缓解土壤砷和气候因素变化的双重压力的稻米品种和作物管理措施,以克服当前迫在眉睫的粮食危机。