Suppr超能文献

硫族化物/p-Si异质结太阳能电池中In Se电子传输层的电子结构

Electronic Structure of In Se Electron Transport Layer for Chalcogenide/p-Si Heterojunction Solar Cells.

作者信息

Mondal Bipanko Kumar, Newaz Md Asif, Rashid Md Abdur, Hossain Khandaker Monower, Mostaque Shaikh Khaled, Rahman Md Ferdous, Rubel Mirza Humaun Kabir, Hossain Jaker

机构信息

Solar Energy Laboratory, Department of Electrical and Electronic Engineering, Department of Physics, and Functional Ceramics and Simulation Laboratory, Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh.

Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Rangpur 5400, Bangladesh.

出版信息

ACS Omega. 2019 Oct 17;4(18):17762-17772. doi: 10.1021/acsomega.9b02210. eCollection 2019 Oct 29.

Abstract

In this article, we perform density functional theory calculation to investigate the electronic and optical properties of newly reported In Se compound using CAmbridge Serial Total Energy Package (CASTEP). Structural parameters obtained from the calculations agree well with the available experimental data, indicating their stability. In the band structure of In Se ( = 0, 0.11, and, 0.22), the Fermi level ( ) crossed over several bands in the conduction bands, which is an indication of the n-type metal-like behavior of In Se compounds. On the other hand, the band structure of In Se ( = 1/3) exhibits semiconducting nature with a band gap of ∼0.2 eV. A strong hybridization among Se 4s, Se 4p and In 5s, In 5p orbitals for InSe and that between Se 4p and In 5p orbitals were seen for β-InSe compound. The dispersion of In 5s, In 5p and Se 4s, Se 4p orbitals is responsible for the electrical conductivity of InSe that is confirmed from DOS calculations as well. Moreover, the bonding natures of In Se materials have been discussed based on the electronic charge density map. Electron-like Fermi surface in InSe ensures the single-band nature of the compound. The efficiency of the In Se/p-Si heterojunction solar cells has been calculated by Solar Cell Capacitance Simulator (SCAPS)-1D software using experimental data of In Se thin films. The effect of various physical parameters on the photovoltaic performance of In Se/p-Si solar cells has been investigated to obtain the highest efficiency of the solar cells. The optimized power conversion efficiency of the solar cell is found to be 22.63% with = 0.703 V, = 38.53 mA/cm, and FF = 83.48%. These entire theoretical predictions indicate the promising applications of In Se two-dimensional compound to harness solar energy in near future.

摘要

在本文中,我们使用剑桥序列总能量包(CASTEP)进行密度泛函理论计算,以研究新报道的In Se化合物的电子和光学性质。计算得到的结构参数与现有的实验数据吻合良好,表明它们的稳定性。在In Se( = 0、0.11和0.22)的能带结构中,费米能级( )穿过导带中的几个能带,这表明In Se化合物具有n型金属样行为。另一方面,In Se( = 1/3)的能带结构表现出半导体性质,带隙约为0.2 eV。对于InSe,在Se 4s、Se 4p与In 5s、In 5p轨道之间存在强烈的杂化,而对于β-InSe化合物,在Se 4p与In 5p轨道之间也存在杂化。In 5s、In 5p以及Se 4s、Se 4p轨道的色散导致了InSe的电导率,这也从态密度计算中得到了证实。此外,基于电子电荷密度图讨论了In Se材料的键合性质。InSe中的类电子费米面确保了该化合物的单带性质。使用In Se薄膜的实验数据,通过太阳能电池电容模拟器(SCAPS)-1D软件计算了In Se/p-Si异质结太阳能电池的效率。研究了各种物理参数对In Se/p-Si太阳能电池光伏性能的影响,以获得太阳能电池的最高效率。发现太阳能电池的优化功率转换效率为22.63%,其中 = 0.703 V, = 38.53 mA/cm,填充因子FF = 83.48%。所有这些理论预测表明,In Se二维化合物在不久的将来在利用太阳能方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b1d/6822117/28a8ef99c1d1/ao9b02210_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验