Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
Med Phys. 2020 Feb;47(2):317-330. doi: 10.1002/mp.13902. Epub 2019 Dec 29.
With advance magnetic resonance (MR)-guided online adaptive radiotherapy (MRgoART) relying on calculation-based intensity-modulated radiation therapy (IMRT) quality assurance (QA), accurate and sensitive QA of the multileaf collimator (MLC) becomes an increasingly essential component for routine machine QA. As such, it is important to assure compliance with the AAPM TG142 guidelines to supplement calculation-based QA methods for an online adaptive radiotherapy program. We have developed and implemented an efficient and highly sensitive QA procedure using an ionization chamber profiler (ICP) array to enable real-time characterization of the positional accuracy of a double-focused and double-stacked MLC on a clinical MR-guided radiotherapy (MRgRT) system and to supplement calculation-based QA for an MRgoART program.
An in-house MR-compatible jig was used to position the ICP (detector resolution 5 mm on X/Y axis) at an extended SDD of 108.4 cm to enable each MLC leaf (8.3 mm leaf width at isocenter) to be uniquely determined by two neighboring ion chambers. The MRgRT linac system utilizes a novel jawless, double-focused, and double-stacked MLC design such that the upper bank (MLC1) and lower bank (MLC2) are offset by half a leaf width. Positional accuracy was characterized by three methods: single bank half-beam block (HBB) at central axis, forward slash diagonal (FSD), and backslash diagonal (BSD) at off-axis. Measurements were performed for each bank in which each leaf occludes half of a detector. A corresponding reference field with the MLC retracted from occlusion was measured. The sensitivities of HBB, FSD, and BSD were evaluated by introducing 0.5-2.5 mm of known errors in 0.5 mm increments, in both positive and negative directions. The relationship between detector response and MLC error was established. Over a 6-month longitudinal assessment, we have evaluated MLC performance with weekly QA of HBB among cardinal angles, and monthly QA of FSD and BSD.
A strong correlation was found between detector response of percentage dose difference and MLC positional error introduced (N = 350 introduced errors) for both HBB and FSD/BSD with coefficient of determination of 0.999 and 0.977, respectively. The relationship between detector response to MLC positional change was found to be 20.65%/mm for HBB and 11.14%/mm for FSD and BSD. At baseline, the mean MLC positional accuracy averaged across all leaves was 0.06 ± 0.27 mm (HBB), 0.04 ± 0.52 mm (FSD), -0.06 ± 0.51 mm (BSD). The mean MLC positional accuracy relative to baseline over the 6-month assessment was found to be highly reproducible at 0.00 ± 0.12 mm (HBB; N = 28 weeks), -0.02 ± 0.19 mm (FSD; N = 6 months), -0.03 ± 0.19 mm (BSD; N = 6 months).
Positional accuracy of a novel jawless, double-focused, double-stacked MLC has been characterized and monitored over 6 months with an efficient, highly sensitive, and robust method using an ICP array. This routine QA method supplements calculation-based IMRT QA for an online adaptive radiotherapy program. Longitudinal assessment demonstrated no-drift in the MLC calibration. A highly reproducible jig setup allowed the validation of MLC positional accuracy to be within TG142 criteria of ±1 mm for 99% of measurements (i.e., 100% HBB, 95% BSD, 95% FSD) over the 6-month assessment.
随着基于先进磁共振(MR)引导的在线自适应放疗(MRgoART)依赖于基于计算的调强放疗(IMRT)质量保证(QA),多叶准直器(MLC)的准确和敏感 QA 成为常规机器 QA 的一个越来越重要的组成部分。因此,确保符合 AAPM TG142 指南对于补充在线自适应放疗计划的基于计算的 QA 方法非常重要。我们已经开发并实施了一种使用电离室轮廓仪(ICP)阵列的高效和高灵敏度 QA 程序,以实时表征临床 MR 引导放疗(MRgRT)系统上双聚焦和双堆叠 MLC 的位置准确性,并补充基于计算的 MRgoART 程序的 QA。
使用内部制造的兼容 MR 的夹具将 ICP(探测器分辨率在 X/Y 轴上为 5 毫米)放置在 108.4 厘米的扩展 SDD 处,以使每个 MLC 叶片(在等中心处为 8.3 毫米叶片宽度)能够通过两个相邻的电离室唯一确定。MRgRT 直线加速器系统采用一种新颖的无牙、双聚焦和双堆叠 MLC 设计,使得上叶片组(MLC1)和下叶片组(MLC2)偏移半个叶片宽度。位置准确性通过三种方法进行了表征:中央轴的单叶片半束块(HBB)、前斜线对角(FSD)和后斜线对角(BSD)在轴外。在每个叶片遮挡半个探测器的情况下,对每个叶片组进行了测量。同时还测量了 MLC 缩回遮挡时的相应参考场。通过在正负方向上以 0.5 毫米的增量引入 0.5 至 2.5 毫米的已知误差,评估了 HBB、FSD 和 BSD 的灵敏度。建立了探测器响应与 MLC 误差之间的关系。在长达 6 个月的纵向评估中,我们通过每周对 cardinal 角度的 HBB 进行 QA,每月对 FSD 和 BSD 进行 QA,评估了 MLC 性能。
对于 HBB 和 FSD/BSD,均发现探测器响应与引入的 MLC 位置误差之间存在很强的相关性(N=350 个引入的误差),决定系数分别为 0.999 和 0.977。发现探测器对 MLC 位置变化的响应与 MLC 位置变化的关系为 20.65%/mm 用于 HBB 和 11.14%/mm 用于 FSD 和 BSD。在基线时,所有叶片平均的 MLC 位置精度为 0.06±0.27mm(HBB)、0.04±0.52mm(FSD)、-0.06±0.51mm(BSD)。在 6 个月的评估中,相对于基线的 MLC 位置精度平均值为 0.00±0.12mm(HBB;N=28 周)、-0.02±0.19mm(FSD;N=6 个月)、-0.03±0.19mm(BSD;N=6 个月),这表明其具有高度的可重复性。
使用 ICP 阵列,已经对新型无牙、双聚焦、双堆叠 MLC 的位置准确性进行了表征和监测,并进行了 6 个月的高效、高灵敏度和稳健的测量。这种常规 QA 方法补充了在线自适应放疗计划的基于计算的 IMRT QA。纵向评估表明 MLC 校准没有漂移。高度可重复的夹具设置允许验证 MLC 位置准确性,在 6 个月的评估中,99%的测量结果(即 100%的 HBB、95%的 BSD、95%的 FSD)都符合 TG142 标准的±1mm。