Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.
Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
J Appl Clin Med Phys. 2023 Nov;24(11):e14111. doi: 10.1002/acm2.14111. Epub 2023 Aug 3.
In the emerging paradigm of stereotactic radiosurgery being proposed for MR-guided radiotherapy (MRgRT), assessment of mechanical geometric accuracy is critical for the implementation of stereotactic delivery. We benchmarked the mechanical accuracy of an MR Linac system that lacks an onboard detector/array. Our mechanical tests utilize a half beam block (HBB) geometry that takes advantage of the sensitivity of a partially occluded detector.
Mechanical tests benchmarked the couch, MLC, and gantry geometric accuracy for an MR-Linac system. An HBB technique was used to irradiate an ionization chamber profiler (ICP) array with partial occlusion of individual detectors for characterization of MLC skew, beam divergence displacement, and RT isocenter localization. The sensitivity of the partially occluded detector's ICP-X (detector width) and ICP-Y (detector length) was characterized by displacing the detector relative to radiation isocenter by 0.2 mm increments, introduced through couch motion. The accuracy of the HBB ICP technique was verified with a starshot using radiochromic film, and the reproducibility was verified on a conventional C-arm Linac and compared to Winston-Lutz.
The sensitivity of the HBB technique as quantified through the dose difference normalized to open field as a function of displacement from RT isocenter was 6.4%/mm and 13.0%/mm for the ICP-X and ICP-Y orientation, respectively, due to the oblong detector orientation. Couch positional accuracy and sag was within ±0.1 mm. Maximum MLC positional displacement was 0.7 mm with mean MLC skew at 0.07°. The maximum beam divergence displacement was 0.03 mm. The gantry angle was within 0.1°. Independent verification of the RT isocenter localization procedure produced repeatable results.
This work serves for characterizing the mechanical and geometric radiation accuracy for the foundation of an MR-guided stereotactic radiosurgery program, as demonstrated with high sensitivity and independent validation.
在新兴的立体定向放射外科模式中,提出了磁共振引导放射治疗(MRgRT),机械几何精度的评估对于立体定向传递至关重要。我们对一种缺乏机载探测器/阵列的 MR 直线加速器系统的机械精度进行了基准测试。我们的机械测试利用半射束块(HBB)几何形状,利用部分遮挡探测器的灵敏度。
机械测试基准测试了 MR 直线加速器系统的治疗床、多叶准直器和龙门架的几何精度。采用 HBB 技术对电离室轮廓仪(ICP)阵列进行照射,对个别探测器进行部分遮挡,以对多叶准直器的偏斜、射束发散位移和 RT 等中心定位进行特征描述。通过治疗床运动使探测器相对于辐射等中心以 0.2 毫米的增量移动,从而对部分遮挡探测器的 ICP-X(探测器宽度)和 ICP-Y(探测器长度)的灵敏度进行特征描述。使用放射色胶片对 HBB ICP 技术的准确性进行了星状验证,并在常规 C 臂直线加速器上进行了重复性验证,并与 Winston-Lutz 进行了比较。
通过剂量差与开放场的归一化作为与 RT 等中心的位移函数来量化 HBB 技术的灵敏度,对于 ICP-X 和 ICP-Y 方向,灵敏度分别为 6.4%/mm 和 13.0%/mm,这是由于探测器的长椭圆形方向所致。治疗床的位置精度和下垂度在±0.1 毫米以内。最大多叶准直器位置位移为 0.7 毫米,平均多叶准直器偏斜度为 0.07°。最大射束发散位移为 0.03 毫米。龙门架角度在 0.1°以内。独立验证 RT 等中心定位过程产生了可重复的结果。
这项工作为磁共振引导立体定向放射外科计划的基础提供了机械和几何辐射精度的特征描述,正如高灵敏度和独立验证所证明的那样。