Suppr超能文献

内含子 RNA:转录后基因调控的‘垃圾’中介物。

Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation.

机构信息

Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America.

Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America; Center for Computational Molecular Biology, Brown University, Providence, RI, United States of America.

出版信息

Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194439. doi: 10.1016/j.bbagrm.2019.194439. Epub 2019 Nov 1.

Abstract

RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control. Building from underlying flexibility in both sequence and structure, intronic RNA provides mechanisms for post-transcriptional gene regulation that are amenable to the tissue and condition specific needs of eukaryotic cells. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.

摘要

RNA 剪接是一种将非编码 RNA(内含子)的中间片段从前体 mRNA 中切除,从而形成成熟 mRNA 产物的过程,长期以来一直因其能够为真核生物蛋白质组增加复杂性而受到重视。然而,有证据表明,这一过程的用途不仅限于蛋白质输出,还为细胞提供了一种用于基因调控的动态工具。在这篇综述中,我们旨在强调内含子 RNA 在介导前体 mRNA 加工过程中特定剪接结果方面的作用,并探索一类新兴的稳定内含子序列,这些序列被观察到在基因表达调控中发挥作用。基于序列和结构的内在灵活性,内含子 RNA 提供了适用于真核细胞组织和条件特异性需求的转录后基因调控机制。本文是由 Francisco Baralle、Ravindra Singh 和 Stefan Stamm 编辑的题为“RNA 结构和剪接调控”的特刊的一部分。

相似文献

1
Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194439. doi: 10.1016/j.bbagrm.2019.194439. Epub 2019 Nov 1.
2
More than a messenger: Alternative splicing as a therapeutic target.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194395. doi: 10.1016/j.bbagrm.2019.06.006. Epub 2019 Jul 2.
3
Combinatorial regulation of alternative splicing.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194392. doi: 10.1016/j.bbagrm.2019.06.003. Epub 2019 Jul 2.
4
Alternative pre-mRNA splicing and proteome expansion in metazoans.
Nature. 2002 Jul 11;418(6894):236-43. doi: 10.1038/418236a.
5
The regulation properties of RNA secondary structure in alternative splicing.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194401. doi: 10.1016/j.bbagrm.2019.07.002. Epub 2019 Jul 16.
7
SR protein kinases: the splice of life.
Biochem Cell Biol. 1999;77(4):293-8.
8
Regulation of mammalian pre-mRNA splicing.
Sci China C Life Sci. 2009 Mar;52(3):253-60. doi: 10.1007/s11427-009-0037-0. Epub 2009 Mar 18.
9
Small non-coding RNA within the endogenous spliceosome and alternative splicing regulation.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194406. doi: 10.1016/j.bbagrm.2019.07.007. Epub 2019 Jul 16.
10
Circular exonic RNAs: When RNA structure meets topology.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194384. doi: 10.1016/j.bbagrm.2019.05.002. Epub 2019 May 15.

引用本文的文献

1
Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition.
Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124.
2
Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition.
bioRxiv. 2024 Mar 27:2024.03.26.586863. doi: 10.1101/2024.03.26.586863.
3
PlantIntronDB: a database for plant introns that host functional elements.
Database (Oxford). 2023 Nov 9;2023. doi: 10.1093/database/baad082.
4
5
sic-4 Reports in sick! Loss of SICKLE induces salicylic acid-dependent cell death in Arabidopsis.
Plant Physiol. 2023 Jul 3;192(3):2238-2239. doi: 10.1093/plphys/kiad237.
6
The Roles of Noncoding RNAs in Systemic Sclerosis.
Front Immunol. 2022 Apr 8;13:856036. doi: 10.3389/fimmu.2022.856036. eCollection 2022.
7
Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae.
J Fungi (Basel). 2022 Apr 13;8(4):397. doi: 10.3390/jof8040397.
8
Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species.
J Fungi (Basel). 2021 Aug 29;7(9):710. doi: 10.3390/jof7090710.
9
Identification of Intronic Lariat-Derived Circular RNAs in Arabidopsis by RNA Deep Sequencing.
Methods Mol Biol. 2021;2362:93-100. doi: 10.1007/978-1-0716-1645-1_5.
10
Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control.
Int J Mol Sci. 2020 Jul 21;21(14):5161. doi: 10.3390/ijms21145161.

本文引用的文献

1
A Comprehensive Map of Intron Branchpoints and Lariat RNAs in Plants.
Plant Cell. 2019 May;31(5):956-973. doi: 10.1105/tpc.18.00711. Epub 2019 Mar 20.
2
Introns are mediators of cell response to starvation.
Nature. 2019 Jan;565(7741):612-617. doi: 10.1038/s41586-018-0859-7. Epub 2019 Jan 16.
3
Excised linear introns regulate growth in yeast.
Nature. 2019 Jan;565(7741):606-611. doi: 10.1038/s41586-018-0828-1. Epub 2019 Jan 16.
4
Stable Intronic Sequence RNAs (sisRNAs): An Expanding Universe.
Trends Biochem Sci. 2019 Mar;44(3):258-272. doi: 10.1016/j.tibs.2018.09.016. Epub 2018 Oct 31.
5
Lariat intronic RNAs in the cytoplasm of vertebrate cells.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E7970-E7977. doi: 10.1073/pnas.1808816115. Epub 2018 Aug 6.
6
A sisRNA/miRNA Axis Prevents Loss of Germline Stem Cells during Starvation in Drosophila.
Stem Cell Reports. 2018 Jul 10;11(1):4-12. doi: 10.1016/j.stemcr.2018.06.002. Epub 2018 Jun 28.
7
Most human introns are recognized via multiple and tissue-specific branchpoints.
Genes Dev. 2018 Apr 1;32(7-8):577-591. doi: 10.1101/gad.312058.118. Epub 2018 Apr 17.
8
Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection.
Cell. 2018 Feb 22;172(5):952-965.e18. doi: 10.1016/j.cell.2018.02.019.
9
Mechanistic insights into precursor messenger RNA splicing by the spliceosome.
Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670. doi: 10.1038/nrm.2017.86. Epub 2017 Sep 27.
10
Splicing and transcription touch base: co-transcriptional spliceosome assembly and function.
Nat Rev Mol Cell Biol. 2017 Oct;18(10):637-650. doi: 10.1038/nrm.2017.63. Epub 2017 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验