Suppr超能文献

组合调控可变剪接。

Combinatorial regulation of alternative splicing.

机构信息

Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, United States of America.

Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, United States of America.

出版信息

Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194392. doi: 10.1016/j.bbagrm.2019.06.003. Epub 2019 Jul 2.

Abstract

The generation of protein coding mRNAs from pre-mRNA is a fundamental biological process that is required for gene expression. Alternative pre-mRNA splicing is responsible for much of the transcriptomic and proteomic diversity observed in higher order eukaryotes. Aberrations that disrupt regular alternative splicing patterns are known to cause human diseases, including various cancers. Alternative splicing is a combinatorial process, meaning many factors affect which two splice sites are ligated together. The features that dictate exon inclusion are comprised of splice site strength, intron-exon architecture, RNA secondary structure, splicing regulatory elements, promoter use and transcription speed by RNA polymerase and the presence of post-transcriptional nucleotide modifications. A comprehensive view of all of the factors that influence alternative splicing decisions is necessary to predict splicing outcomes and to understand the molecular basis of disease. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.

摘要

从前体 mRNA 生成蛋白质编码 mRNA 是一个基本的生物学过程,是基因表达所必需的。选择性前体 mRNA 剪接是高等真核生物中观察到的转录组和蛋白质组多样性的主要原因。已知扰乱正常选择性剪接模式的异常会导致人类疾病,包括各种癌症。选择性剪接是一个组合过程,这意味着许多因素会影响两个剪接位点连接在一起。决定外显子包含的特征包括剪接位点强度、内含子-外显子结构、RNA 二级结构、剪接调控元件、启动子的使用以及 RNA 聚合酶的转录速度,以及转录后核苷酸修饰的存在。为了预测剪接结果并理解疾病的分子基础,需要全面了解影响选择性剪接决策的所有因素。本文是由 Francisco Baralle、Ravindra Singh 和 Stefan Stamm 编辑的题为“RNA 结构和剪接调控”的特刊的一部分。

相似文献

1
Combinatorial regulation of alternative splicing.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194392. doi: 10.1016/j.bbagrm.2019.06.003. Epub 2019 Jul 2.
2
Context matters: Regulation of splice donor usage.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194391. doi: 10.1016/j.bbagrm.2019.06.002. Epub 2019 Jun 13.
3
The regulation properties of RNA secondary structure in alternative splicing.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194401. doi: 10.1016/j.bbagrm.2019.07.002. Epub 2019 Jul 16.
4
How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194403. doi: 10.1016/j.bbagrm.2019.07.004. Epub 2019 Jul 16.
5
Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194439. doi: 10.1016/j.bbagrm.2019.194439. Epub 2019 Nov 1.
6
More than a messenger: Alternative splicing as a therapeutic target.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194395. doi: 10.1016/j.bbagrm.2019.06.006. Epub 2019 Jul 2.
7
Conserved RNA secondary structures promote alternative splicing.
RNA. 2008 Aug;14(8):1463-9. doi: 10.1261/rna.1069408. Epub 2008 Jun 25.
8
Small non-coding RNA within the endogenous spliceosome and alternative splicing regulation.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194406. doi: 10.1016/j.bbagrm.2019.07.007. Epub 2019 Jul 16.
9
Circular exonic RNAs: When RNA structure meets topology.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194384. doi: 10.1016/j.bbagrm.2019.05.002. Epub 2019 May 15.
10
Repeat-associated RNA structure and aberrant splicing.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194405. doi: 10.1016/j.bbagrm.2019.07.006. Epub 2019 Jul 16.

引用本文的文献

1
Predicting the structural impact of human alternative splicing.
Genome Biol. 2025 Sep 17;26(1):283. doi: 10.1186/s13059-025-03744-x.
2
Alternative splicing factors and cardiac disease: more than just missplicing?
RNA. 2025 Feb 19;31(3):300-306. doi: 10.1261/rna.080332.124.
3
Splicing Dysregulation of Non-Canonical GC-5' Splice Sites of Breast Cancer Susceptibility Genes and .
Cancers (Basel). 2024 Oct 22;16(21):3562. doi: 10.3390/cancers16213562.
4
Alternative splicing dynamically regulates common carp embryogenesis under thermal stress.
BMC Genomics. 2024 Oct 2;25(1):918. doi: 10.1186/s12864-024-10838-6.
5
A hybrid approach of ensemble learning and grey wolf optimizer for DNA splice junction prediction.
PLoS One. 2024 Sep 23;19(9):e0310698. doi: 10.1371/journal.pone.0310698. eCollection 2024.
6
U1 snRNA interactions with deep intronic sequences regulate splicing of multiple exons of spinal muscular atrophy genes.
Front Neurosci. 2024 Jul 12;18:1412893. doi: 10.3389/fnins.2024.1412893. eCollection 2024.
7
Circulating Exosomes from Septic Mice Activate NF-κB/MIR17HG Pathway in Macrophages.
Biomedicines. 2024 Feb 27;12(3):534. doi: 10.3390/biomedicines12030534.
8
Predicting the Structural Impact of Human Alternative Splicing.
bioRxiv. 2023 Dec 24:2023.12.21.572928. doi: 10.1101/2023.12.21.572928.
10
Mechanistic Insights into Alternative Gene Splicing in Oxidative Stress and Tissue Injury.
Antioxid Redox Signal. 2024 Nov;41(13-15):890-909. doi: 10.1089/ars.2023.0437. Epub 2023 Nov 23.

本文引用的文献

1
Assaying RNA structure with LASER-Seq.
Nucleic Acids Res. 2019 Jan 10;47(1):43-55. doi: 10.1093/nar/gky1172.
2
SnapShot: RNA Structure Probing Technologies.
Cell. 2018 Oct 4;175(2):600-600.e1. doi: 10.1016/j.cell.2018.09.024.
3
Light-activated chemical probing of nucleobase solvent accessibility inside cells.
Nat Chem Biol. 2018 Mar;14(3):276-283. doi: 10.1038/nchembio.2548. Epub 2018 Jan 15.
4
Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation.
Cell. 2017 Aug 10;170(4):701-713.e11. doi: 10.1016/j.cell.2017.07.011. Epub 2017 Aug 3.
5
Dynamic RNA Modifications in Gene Expression Regulation.
Cell. 2017 Jun 15;169(7):1187-1200. doi: 10.1016/j.cell.2017.05.045.
6
N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein.
Nucleic Acids Res. 2017 Jun 2;45(10):6051-6063. doi: 10.1093/nar/gkx141.
7
Cryo-EM structure of a human spliceosome activated for step 2 of splicing.
Nature. 2017 Feb 16;542(7641):318-323. doi: 10.1038/nature21079. Epub 2017 Jan 11.
8
Advances in the field of single-particle cryo-electron microscopy over the last decade.
Nat Protoc. 2017 Feb;12(2):209-212. doi: 10.1038/nprot.2017.004. Epub 2017 Jan 5.
9
DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.
Nat Methods. 2017 Jan;14(1):75-82. doi: 10.1038/nmeth.4057. Epub 2016 Nov 7.
10
m(6)A RNA methylation promotes XIST-mediated transcriptional repression.
Nature. 2016 Sep 15;537(7620):369-373. doi: 10.1038/nature19342. Epub 2016 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验