Suppr超能文献

miRNAs 靶向调控转录因子在血管损伤后血管平滑肌细胞生长和内膜增厚中的作用。

Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury.

机构信息

Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia.

出版信息

Int J Mol Sci. 2019 Oct 31;20(21):5445. doi: 10.3390/ijms20215445.

Abstract

Neointima formation after percutaneous coronary intervention (PCI) is a manifestation of "phenotype switching" by vascular smooth muscle cells (SMC), a process that involves de-differentiation from a contractile quiescent phenotype to one that is richly synthetic. In response to injury, SMCs migrate, proliferate, down-regulate SMC-specific differentiation genes, and later, can revert to the contractile phenotype. The vascular response to injury is regulated by microRNAs (or miRNAs), small non-coding RNAs that control gene expression. Interactions between miRNAs and transcription factors impact gene regulatory networks. This article briefly reviews the roles of a range of miRNAs in molecular and cellular processes that control intimal thickening, focusing mainly on transcription factors, some of which are encoded by immediate-early genes. Examples include Egr-1, junB, KLF4, KLF5, Elk-1, Ets-1, HMGB1, Smad1, Smad3, FoxO4, SRF, Rb, Sp1 and c-Myb. Such mechanistic information could inform the development of strategies that block SMC growth, neointima formation, and potentially overcome limitations of lasting efficacy following PCI.

摘要

经皮冠状动脉介入治疗(PCI)后的新内膜形成是血管平滑肌细胞(SMC)“表型转换”的表现,这一过程涉及从收缩静止表型去分化为富含合成的表型。SMC 对损伤作出反应,迁移、增殖、下调 SMC 特异性分化基因,随后可恢复为收缩表型。血管对损伤的反应受到 microRNAs(miRNAs)的调节,miRNAs 是控制基因表达的小非编码 RNA。miRNAs 与转录因子之间的相互作用影响基因调控网络。本文简要综述了一系列 miRNAs 在控制内膜增厚的分子和细胞过程中的作用,主要关注转录因子,其中一些由即刻早期基因编码。例子包括 Egr-1、junB、KLF4、KLF5、Elk-1、Ets-1、HMGB1、Smad1、Smad3、FoxO4、SRF、Rb、Sp1 和 c-Myb。这种机制信息可以为开发阻止 SMC 生长、新内膜形成的策略提供信息,并有可能克服 PCI 后持续疗效的局限性。

相似文献

2
Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair.
Cell Mol Life Sci. 2017 Jan;74(2):359-372. doi: 10.1007/s00018-016-2349-0. Epub 2016 Sep 12.
4
Regulator of G-Protein Signaling 5 Prevents Smooth Muscle Cell Proliferation and Attenuates Neointima Formation.
Arterioscler Thromb Vasc Biol. 2016 Feb;36(2):317-27. doi: 10.1161/ATVBAHA.115.305974. Epub 2015 Dec 10.
5
New endoplasmic reticulum stress regulator, Gipie, regulates the survival of vascular smooth muscle cells and the neointima formation after vascular injury.
Arterioscler Thromb Vasc Biol. 2015 May;35(5):1246-53. doi: 10.1161/ATVBAHA.114.304923. Epub 2015 Mar 19.
6
Mindin regulates vascular smooth muscle cell phenotype and prevents neointima formation.
Clin Sci (Lond). 2015 Jul;129(2):129-45. doi: 10.1042/CS20140679.
8
Interferon Regulatory Factor 4 Inhibits Neointima Formation by Engaging Krüppel-Like Factor 4 Signaling.
Circulation. 2017 Oct 10;136(15):1412-1433. doi: 10.1161/CIRCULATIONAHA.116.026046. Epub 2017 Aug 29.
9
Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation.
Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2617-25. doi: 10.1161/ATVBAHA.115.306534. Epub 2015 Oct 1.
10
STAT4 deficiency protects against neointima formation following arterial injury in mice.
J Mol Cell Cardiol. 2014 Sep;74:284-94. doi: 10.1016/j.yjmcc.2014.06.001. Epub 2014 Jun 14.

引用本文的文献

2
Pulmonary Vascular Remodeling in Pulmonary Hypertension.
J Pers Med. 2023 Feb 19;13(2):366. doi: 10.3390/jpm13020366.
3
miR579-3p is an inhibitory modulator of neointimal hyperplasia and transcription factors c-MYB and KLF4.
Cell Death Discov. 2023 Feb 22;9(1):73. doi: 10.1038/s41420-023-01364-7.
6
Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4).
Arterioscler Thromb Vasc Biol. 2021 Nov;41(11):2693-2707. doi: 10.1161/ATVBAHA.121.316600. Epub 2021 Sep 2.
8
Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4.
Onco Targets Ther. 2020 Sep 24;13:9443-9453. doi: 10.2147/OTT.S251508. eCollection 2020.

本文引用的文献

1
Restenosis of Drug-Eluting Stents: A New Classification System Based on Disease Mechanism to Guide Treatment and State-of-the-Art Review.
Circ Cardiovasc Interv. 2019 Aug;12(8):e007023. doi: 10.1161/CIRCINTERVENTIONS.118.007023. Epub 2019 Jul 26.
2
Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation.
Arterioscler Thromb Vasc Biol. 2019 Jul;39(7):1351-1368. doi: 10.1161/ATVBAHA.119.312787. Epub 2019 May 30.
5
Impact of miRNA in Atherosclerosis.
Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):e159-e170. doi: 10.1161/ATVBAHA.118.310227.
6
Setbacks shadow microRNA therapies in the clinic.
Nat Biotechnol. 2018 Oct 11;36(10):909-910. doi: 10.1038/nbt1018-909.
7
9
MiR-140-3p is Involved in In-Stent Restenosis by Targeting C-Myb and BCL-2 in Peripheral Artery Disease.
J Atheroscler Thromb. 2018 Nov 1;25(11):1168-1181. doi: 10.5551/jat.44024. Epub 2018 May 11.
10
MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor.
Cell Physiol Biochem. 2018;46(4):1566-1580. doi: 10.1159/000489203. Epub 2018 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验