基于多种生物信息融合的 miRNA-环境因子相互作用推断。

Inferring microRNA-Environmental Factor Interactions Based on Multiple Biological Information Fusion.

机构信息

School of information and management, Guangxi Medical University, Nanning 530021, China.

School of Computer, Electronic and Information, Guangxi University, Nanning 530004, China.

出版信息

Molecules. 2018 Sep 24;23(10):2439. doi: 10.3390/molecules23102439.

Abstract

Accumulated studies have shown that environmental factors (EFs) can regulate the expression of microRNA (miRNA) which is closely associated with several diseases. Therefore, identifying miRNA-EF associations can facilitate the study of diseases. Recently, several computational methods have been proposed to explore miRNA-EF interactions. In this paper, a novel computational method, MEI-BRWMLL, is proposed to uncover the relationship between miRNA and EF. The similarities of miRNA-miRNA are calculated by using miRNA sequence, miRNA-EF interaction, and the similarities of EF-EF are calculated based on the anatomical therapeutic chemical information, chemical structure and miRNA-EF interaction. The similarity network fusion is used to fuse the similarity between miRNA and the similarity between EF, respectively. Further, the multiple-label learning and bi-random walk are employed to identify the association between miRNA and EF. The experimental results show that our method outperforms the state-of-the-art algorithms.

摘要

已有研究表明,环境因素(EFs)可以调节 microRNA(miRNA)的表达,而 miRNA 与多种疾病密切相关。因此,鉴定 miRNA-EF 之间的关联有助于研究疾病。最近,已经提出了几种计算方法来探索 miRNA-EF 相互作用。在本文中,提出了一种新的计算方法 MEI-BRWMLL,用于揭示 miRNA 和 EF 之间的关系。通过 miRNA 序列、miRNA-EF 相互作用以及 EF-EF 之间的相似性(基于解剖治疗化学信息、化学结构和 miRNA-EF 相互作用)来计算 miRNA-miRNA 的相似性。分别使用相似网络融合来融合 miRNA 之间的相似性和 EF 之间的相似性。此外,采用多标签学习和双随机游走来识别 miRNA 和 EF 之间的关联。实验结果表明,我们的方法优于最先进的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9557/6222788/df96589451c2/molecules-23-02439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索