Suppr超能文献

多传感器数据融合在值班消防员实时支援系统中的应用。

Multi-Sensor Data Fusion in A Real-Time Support System for On-Duty Firefighters.

机构信息

Department of Electronics and Telecommunication, VNU University of Engineering and Technology, Hanoi 123000, Vietnam.

Department of Automation and Technical Equipment of Fire Fighting & Rescue, The University of Fire, Hanoi 100000, Vietnam.

出版信息

Sensors (Basel). 2019 Nov 1;19(21):4746. doi: 10.3390/s19214746.

Abstract

While working on fire ground, firefighters risk their well-being in a state where any incident might cause not only injuries, but also fatality. They may be incapacitated by unpredicted falls due to floor cracks, holes, structure failure, gas explosion, exposure to toxic gases, or being stuck in narrow path, etc. Having acknowledged this need, in this study, we focus on developing an efficient portable system to detect firefighter's falls, loss of physical performance, and alert high CO level by using a microcontroller carried by a firefighter with data fusion from a 3-DOF (degrees of freedom) accelerometer, 3-DOF gyroscope, 3-DOF magnetometer, barometer, and a MQ7 sensor using our proposed fall detection, loss of physical performance detection, and CO monitoring algorithms. By the combination of five sensors and highly efficient data fusion algorithms to observe the fall event, loss of physical performance, and detect high CO level, we can distinguish among falling, loss of physical performance, and the other on-duty activities (ODAs) such as standing, walking, running, jogging, crawling, climbing up/down stairs, and moving up/down in elevators. Signals from these sensors are sent to the microcontroller to detect fall, loss of physical performance, and alert high CO level. The proposed algorithms can achieve 100% of accuracy, specificity, and sensitivity in our experimental datasets and 97.96%, 100%, and 95.89% in public datasets in distinguishing between falls and ODAs activities, respectively. Furthermore, the proposed algorithm perfectly distinguishes between loss of physical performance and up/down movement in the elevator based on barometric data fusion. If a firefighter is unconscious following the fall or loss of physical performance, an alert message will be sent to their incident commander (IC) via the nRF224L01 module.

摘要

在消防现场工作时,消防员的健康状况处于危险之中,任何事件都可能导致不仅是受伤,还有可能导致死亡。他们可能会因地板裂缝、洞口、结构故障、气体爆炸、暴露于有毒气体或被困在狭窄的通道中等不可预测的跌倒而丧失能力。鉴于此需要,在本研究中,我们专注于开发一种高效的便携式系统,通过使用消防员携带的微控制器,从 3 自由度(自由度)加速度计、3 自由度陀螺仪、3 自由度磁力计、气压计和 MQ7 传感器获取数据融合,来检测消防员的跌倒、体力下降和高 CO 水平,并使用我们提出的跌倒检测、体力下降检测和 CO 监测算法发出警报。通过五个传感器和高效的数据融合算法的组合来观察跌倒事件、体力下降和检测高 CO 水平,我们可以区分跌倒、体力下降和其他值班活动(ODA),如站立、行走、跑步、慢跑、爬行、上下楼梯和上下电梯。这些传感器的信号被发送到微控制器以检测跌倒、体力下降和高 CO 水平警报。所提出的算法在我们的实验数据集中可以达到 100%的准确性、特异性和敏感性,在公共数据集中可以达到 97.96%、100%和 95.89%,分别用于区分跌倒和 ODA 活动。此外,所提出的算法可以通过气压数据融合完美地区分体力下降和电梯上下运动。如果消防员在跌倒或体力下降后失去意识,警报消息将通过 nRF224L01 模块发送给他们的事故指挥官(IC)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0029/6864534/847090cf7c34/sensors-19-04746-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验