Suppr超能文献

基于支持向量机预测居住在社区中的老年人的吞咽相关生活质量。

Predicting the Swallow-Related Quality of Life of the Elderly Living in a Local Community Using Support Vector Machine.

机构信息

Department of Speech Language Pathology, School of Public Health, Honam University, 417, Eodeung-daero, Gwangsan-gu, Gwangju 62399, Korea.

出版信息

Int J Environ Res Public Health. 2019 Nov 3;16(21):4269. doi: 10.3390/ijerph16214269.

Abstract

This study developed a support vector machine (SVM) algorithm-based prediction model with considering influence factors associated with the swallowing quality-of-life as the predictor variables and provided baseline information for enhancing the swallowing quality of elderly people's lives in the future. This study sampled 142 elderly people equal to or older than 65 years old who were using a senior welfare center. The swallowing problem associated quality of life was defined by the swallowing quality-of-life (SWAL-QOL). In order to verify the predictive power of the model, this study compared the predictive power of the Gaussian function with that of a linear algorithm, polynomial algorithm, and a sigmoid algorithm. A total of 33.9% of the subjects decreased in swallowing quality-of-life. The swallowing quality-of-life prediction model for the elderly, based on the SVM, showed both preventive factors and risk factors. Risk factors were denture use, experience of using aspiration in the past one month, being economically inactive, having a mean monthly household income <2 million KRW, being an elementary school graduate or below, female, 75 years old or older, living alone, requiring time for finishing one meal on average ≤15 min or ≥40 min, having depression, stress, and cognitive impairment. It is necessary to monitor the high-risk group constantly in order to maintain the swallowing quality-of-life in the elderly based on the prevention and risk factors associated with the swallowing quality-of-life derived from this prediction model.

摘要

本研究开发了一种基于支持向量机(SVM)算法的预测模型,考虑了与吞咽生活质量相关的影响因素作为预测变量,为未来提高老年人的吞咽生活质量提供了基线信息。本研究在一个老年福利中心选取了 142 名 65 岁及以上的老年人。与吞咽问题相关的生活质量由吞咽生活质量(SWAL-QOL)定义。为了验证模型的预测能力,本研究比较了高斯函数、线性算法、多项式算法和 sigmoid 算法的预测能力。共有 33.9%的受试者吞咽质量下降。基于 SVM 的老年人吞咽质量预测模型显示了预防因素和风险因素。风险因素包括戴义齿、过去一个月有使用吸痰经历、经济不活跃、家庭月收入低于 200 万韩元、小学及以下学历、女性、75 岁及以上、独居、每餐平均用时≤15 分钟或≥40 分钟、有抑郁、压力和认知障碍。有必要根据该预测模型得出的与吞咽生活质量相关的预防和风险因素,对高风险人群进行持续监测,以维持老年人的吞咽生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f10d/6862249/084ac67ffcbb/ijerph-16-04269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验