Suppr超能文献

ProTstab - 细胞蛋白质稳定性预测工具

ProTstab - predictor for cellular protein stability.

作者信息

Yang Yang, Ding Xuesong, Zhu Guanchen, Niroula Abhishek, Lv Qiang, Vihinen Mauno

机构信息

School of Computer Science and Technology, Soochow University, Suzhou, China.

Department of Experimental Medical Science, BMC B13, Lund University, Lund, Sweden.

出版信息

BMC Genomics. 2019 Nov 4;20(1):804. doi: 10.1186/s12864-019-6138-7.

Abstract

BACKGROUND

Stability is one of the most fundamental intrinsic characteristics of proteins and can be determined with various methods. Characterization of protein properties does not keep pace with increase in new sequence data and therefore even basic properties are not known for far majority of identified proteins. There have been some attempts to develop predictors for protein stabilities; however, they have suffered from small numbers of known examples.

RESULTS

We took benefit of results from a recently developed cellular stability method, which is based on limited proteolysis and mass spectrometry, and developed a machine learning method using gradient boosting of regression trees. ProTstab method has high performance and is well suited for large scale prediction of protein stabilities.

CONCLUSIONS

The Pearson's correlation coefficient was 0.793 in 10-fold cross validation and 0.763 in independent blind test. The corresponding values for mean absolute error are 0.024 and 0.036, respectively. Comparison with a previously published method indicated ProTstab to have superior performance. We used the method to predict stabilities of all the remaining proteins in the entire human proteome and then correlated the predicted stabilities to protein chain lengths of isoforms and to localizations of proteins.

摘要

背景

稳定性是蛋白质最基本的内在特性之一,可用多种方法测定。蛋白质特性的表征未能跟上新序列数据增加的步伐,因此绝大多数已鉴定蛋白质的基本特性仍不为人所知。已有一些开发蛋白质稳定性预测器的尝试;然而,它们受到已知实例数量少的困扰。

结果

我们利用了最近开发的一种基于有限蛋白酶解和质谱的细胞稳定性方法的结果,并开发了一种使用回归树梯度提升的机器学习方法。ProTstab方法具有高性能,非常适合大规模预测蛋白质稳定性。

结论

在10折交叉验证中,皮尔逊相关系数为0.793,在独立盲测中为0.763。平均绝对误差的相应值分别为0.024和0.036。与先前发表的方法比较表明ProTstab具有更优的性能。我们使用该方法预测了整个人类蛋白质组中所有其余蛋白质的稳定性,然后将预测的稳定性与同工型的蛋白质链长度以及蛋白质的定位相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e15/6830000/de352797f249/12864_2019_6138_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验