NIMBE, Commissariat à l'Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France.
Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d'Aix-Marseille (BIAM), Commissariat à l'Energie Atomique, Nice, France.
Int J Nanomedicine. 2019 Sep 30;14:7933-7946. doi: 10.2147/IJN.S211496. eCollection 2019.
Human trials combining external radiotherapy (RT) and metallic nanoparticles are currently underway in cancer patients. For internal RT, in which a radioisotope such as radioiodine is systemically administered into patients, there is also a need for enhancing treatment efficacy, decreasing radiation-induced side effects and overcoming radio-resistance. However, if strategies vectorising radioiodine through nanocarriers have been documented, sensitizing the neoplasm through the use of nanotherapeutics easily translatable to the clinic in combination with the standard systemic radioiodine treatment has not been assessed yet.
The present study explored the potential of hybrid poly(methacrylic acid)-grafted gold nanoparticles to improve the performances of systemic I-mediated RT on cancer cells and in tumor-bearing mice. Such nanoparticles were chosen based on their ability previously described by our group to safely withstand irradiation doses while exhibiting good biocompatibility and enhanced cellular uptake.
In vitro clonogenic assays performed on melanoma and colorectal cancer cells showed that poly(methacrylic acid)-grafted gold nanoparticles (PMAA-AuNPs) could efficiently lead to a marked tumor cell mortality when combined to a low activity of radioiodine, which alone appeared to be essentially ineffective on tumor cells. In vivo, tumor enrichment with PMAA-AuNPs significantly enhanced the killing potential of a systemic radioiodine treatment.
This is the first report of a simple and reliable nanomedicine-based approach to reduce the dose of radioiodine required to reach curability. In addition, these results open up novel perspectives for using high-Z metallic NPs in additional molecular radiation therapy demonstrating heterogeneous dose distributions.
目前正在癌症患者中进行联合外部放射治疗(RT)和金属纳米粒子的人体试验。对于内部 RT,放射性碘等放射性同位素通过全身给药进入患者体内,也需要提高治疗效果,降低辐射引起的副作用并克服放射抗性。然而,如果已经有通过纳米载体将放射性碘靶向的策略,那么通过使用纳米疗法来使肿瘤敏感,同时结合标准的全身放射性碘治疗,很容易转化为临床应用,但尚未得到评估。
本研究探讨了杂化聚(甲基丙烯酸)接枝金纳米粒子(PMAA-AuNPs)提高全身 I 介导的 RT 在癌细胞和荷瘤小鼠中性能的潜力。选择这些纳米粒子是基于我们之前的研究,它们能够安全地承受辐射剂量,同时表现出良好的生物相容性和增强的细胞摄取能力。
对黑色素瘤和结直肠癌细胞进行的体外集落形成试验表明,聚(甲基丙烯酸)接枝金纳米粒子(PMAA-AuNPs)与低活性的放射性碘结合时,可以有效地导致明显的肿瘤细胞死亡率,而放射性碘单独使用对肿瘤细胞基本上无效。在体内,PMAA-AuNPs 的肿瘤富集显著增强了全身放射性碘治疗的杀伤潜力。
这是首例报道的基于简单可靠的纳米医学方法来降低达到治愈所需的放射性碘剂量的报告。此外,这些结果为使用高 Z 金属 NPs 开辟了新的前景,用于展示不均匀剂量分布的额外分子放射治疗。