Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 route de Gray, 25030, Besançon Cedex, France; Chemistry department, college of women science, Babylon University, PO Box: 4 Iraq - Babylon - Hilla.
Université de Bourgogne Franche-Comté, UMR CNRS 6213 Institut UTINAM, 16 route de Gray, 25030, Besançon Cedex, France.
Colloids Surf B Biointerfaces. 2019 Mar 1;175:606-613. doi: 10.1016/j.colsurfb.2018.12.041. Epub 2018 Dec 17.
Plasmid DNA in aerated aqueous solution is used as a probe to determine whose of the reactive oxygen species (ROS) generated after absorption of ultra-soft X-rays (USX) take part in biomolecule damage in the presence and in absence of Gold Nano-Particles (GNP) and specific scavengers. Citrate-coated GNPs with core sizes of 6, 10 and 25 nm are synthetized and characterized, especially in terms of plasmon band shift, ζ-potential and hydrodynamic radii (respectively 9, 21 and 30 nm). We confirm the radiosensitizing effect of GNP and show that the SSB number per plasmid increases when, for a same mass of gold element, the core size of the gold nanoparticles decreases. Hydroxyl radicals (OH) are scavenged using the positively-charged 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) and the neutral dimethyl sulfoxide (DMSO) molecules. Due to both negatively-charged environments of DNA and GNP, at identical scavenging capacity, TRIS is more effective at quenching OH than DMSO. The strong radiosensitizing effect of hydroxyl radicals is confirmed. Methanoate anions are then used to transform OH into hydrogen peroxide; the latter being known to be non-aggressive regarding DNA in the absence of easily oxidable metallic ions (Fenton reactions). Surprisingly, in the presence of GNP, high DNA damage yields are observed even though hydrogen peroxide might not be hold as responsible. Conversely, the radiosensitizing effect of GNP is not observed anymore when HO is scavenged using pyruvate ions. We demonstrate that hydrogen peroxide constitutes quite unexpectedly a hidden stock of OH which are activated at the surface of the GNP by decomposition of HO molecules.
在有氧水溶液中,质粒 DNA 被用作探针,以确定超软 X 射线(USX)吸收后产生的活性氧(ROS)中,哪些参与了金纳米粒子(GNP)和特定清除剂存在和不存在时生物分子的损伤。合成并表征了具有 6、10 和 25nm 核大小的柠檬酸涂层 GNPs,特别是在等离子体带位移、ζ-电位和水动力半径(分别为 9、21 和 30nm)方面。我们证实了 GNP 的放射增敏作用,并表明当金纳米粒子的核大小相同时,对于相同质量的金元素,质粒的 SSB 数量增加。使用带正电荷的 2-氨基-2-羟甲基-1,3-丙二醇(TRIS)和中性二甲亚砜(DMSO)分子清除羟基自由基(OH)。由于 DNA 和 GNP 的环境均带负电荷,在相同的清除能力下,TRIS 比 DMSO 更有效地淬灭 OH。确认了羟基自由基的强烈放射增敏作用。然后使用甲醇盐阴离子将 OH 转化为过氧化氢;后者在不存在易氧化金属离子(芬顿反应)的情况下,已知对 DNA 没有攻击性。令人惊讶的是,即使过氧化氢可能不作为负责的物质,在存在 GNP 的情况下,仍观察到高的 DNA 损伤产率。相反,当使用丙酮酸离子清除 HO 时,GNP 的放射增敏作用不再观察到。我们证明,过氧化氢出乎意料地构成了 OH 的隐藏储备,这些 OH 通过 HO 分子的分解在 GNP 表面被激活。