Suppr超能文献

基于连接组的预测模型在母体大脑中的应用:对母婴联结的启示

The Application of Connectome-Based Predictive Modeling to the Maternal Brain: Implications for Mother-Infant Bonding.

作者信息

Rutherford Helena J V, Potenza Marc N, Mayes Linda C, Scheinost Dustin

机构信息

Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.

Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA.

出版信息

Cereb Cortex. 2020 Mar 14;30(3):1538-1547. doi: 10.1093/cercor/bhz185.

Abstract

Maternal bonding early postpartum lays an important foundation for child development. Changing brain structure and function during pregnancy and postpartum may underscore maternal bonding. We employed connectome-based predictive modeling (CPM) to measure brain functional connectivity and predict self-reported maternal bonding in mothers at 2 and 8 months postpartum. At 2 months, CPM predicted maternal anxiety in the bonding relationship: Greater integration between cerebellar and motor-sensory-auditory networks and between frontoparietal and motor-sensory-auditory networks were associated with more maternal anxiety toward their infant. Furthermore, greater segregation between the cerebellar and frontoparietal, and within the motor-sensory-auditory networks, was associated with more maternal anxiety regarding their infant. We did not observe CPM prediction of maternal bonding impairments or rejection/anger toward the infant. Finally, considering 2 and 8 months of data, changes in network connectivity were associated with changes in maternal anxiety in the bonding relationship. Our results suggest that changing connectivity among maternal brain networks may provide insight into the mother-infant bond, specifically in the context of anxiety and the representation of the infant in the mother's mind. These findings provide an opportunity to mechanistically investigate approaches to enhance the connectivity of these networks to optimize the representational and behavioral quality of the caregiving relationship.

摘要

产后早期的母婴联结为儿童发育奠定了重要基础。孕期和产后大脑结构与功能的变化可能突出了母婴联结。我们采用基于连接组的预测模型(CPM)来测量大脑功能连接,并预测产后2个月和8个月母亲自我报告的母婴联结情况。在产后2个月时,CPM预测了母婴联结关系中的母亲焦虑:小脑与运动-感觉-听觉网络之间以及额顶叶与运动-感觉-听觉网络之间更强的整合与母亲对婴儿更多的焦虑相关。此外,小脑与额顶叶之间以及运动-感觉-听觉网络内部更强的分离与母亲对婴儿更多的焦虑相关。我们未观察到CPM对母婴联结障碍或对婴儿的排斥/愤怒的预测。最后,综合考虑2个月和8个月的数据,网络连接的变化与母婴联结关系中母亲焦虑的变化相关。我们的结果表明,母亲大脑网络间连接性的变化可能为母婴关系提供见解,特别是在焦虑以及婴儿在母亲心中的表征方面。这些发现为从机制上研究增强这些网络连接性的方法提供了机会,以优化养育关系的表征和行为质量。

相似文献

4
The association between prenatal maternal anxiety disorders and postpartum perceived and observed mother-infant relationship quality.
J Anxiety Disord. 2019 Dec;68:102148. doi: 10.1016/j.janxdis.2019.102148. Epub 2019 Sep 21.
6
Adult attachment style and maternal-infant bonding: the indirect path of parenting stress.
BMC Psychol. 2020 Jun 8;8(1):58. doi: 10.1186/s40359-020-00424-2.
8
Postpartum-specific anxiety and maternal bonding: Further evidence to support the use of childbearing specific mood tools.
J Reprod Infant Psychol. 2021 Apr;39(2):114-124. doi: 10.1080/02646838.2019.1680960. Epub 2019 Oct 23.
9
Two babies, two bonds: Frequency and correlates of differential maternal-infant bonding in mothers of twins.
Infant Ment Health J. 2024 May;45(3):286-300. doi: 10.1002/imhj.22108. Epub 2024 Feb 25.
10
Early infant temperament shapes the nature of mother-infant bonding in the first postpartum year.
Infant Behav Dev. 2020 Feb;58:101428. doi: 10.1016/j.infbeh.2020.101428. Epub 2020 Mar 2.

引用本文的文献

1
Individualized prediction of future cognition based on developmental changes in cortical anatomy.
Neuroimage Rep. 2022 Sep 2;2(4):100127. doi: 10.1016/j.ynirp.2022.100127. eCollection 2022 Dec.
2
Distinct neural networks predict cocaine versus cannabis treatment outcomes.
Mol Psychiatry. 2023 Aug;28(8):3365-3372. doi: 10.1038/s41380-023-02120-0. Epub 2023 Jun 12.
3
Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes.
Psychol Med. 2023 Oct;53(14):6656-6665. doi: 10.1017/S003329172300003X. Epub 2023 Mar 9.
4
Interpreting Brain Biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging.
IEEE Signal Process Mag. 2022 Jul;39(4):107-118. doi: 10.1109/MSP.2022.3155951. Epub 2022 Jun 28.
5
Connectome-based predictive modeling of trait forgiveness.
Soc Cogn Affect Neurosci. 2023 Feb 28;18(1). doi: 10.1093/scan/nsad002.
6
Neural activation to infant cry among Latina and non-Latina White mothers.
Behav Brain Res. 2023 Mar 12;441:114298. doi: 10.1016/j.bbr.2023.114298. Epub 2023 Jan 13.
9
Cerebellar engagement in the attachment behavioral system.
Sci Rep. 2022 Aug 9;12(1):13571. doi: 10.1038/s41598-022-17722-x.
10
Social experience alters oxytocinergic modulation in the nucleus accumbens of female prairie voles.
Curr Biol. 2022 Mar 14;32(5):1026-1037.e4. doi: 10.1016/j.cub.2022.01.014. Epub 2022 Feb 1.

本文引用的文献

1
Connectome-Based Prediction of Cocaine Abstinence.
Am J Psychiatry. 2019 Feb 1;176(2):156-164. doi: 10.1176/appi.ajp.2018.17101147. Epub 2019 Jan 4.
2
Task-induced brain state manipulation improves prediction of individual traits.
Nat Commun. 2018 Jul 18;9(1):2807. doi: 10.1038/s41467-018-04920-3.
3
Brain plasticity in pregnancy and the postpartum period: links to maternal caregiving and mental health.
Arch Womens Ment Health. 2019 Apr;22(2):289-299. doi: 10.1007/s00737-018-0889-z. Epub 2018 Jul 14.
4
Neural pathways of maternal responding: systematic review and meta-analysis.
Arch Womens Ment Health. 2019 Apr;22(2):179-187. doi: 10.1007/s00737-018-0878-2. Epub 2018 Jul 9.
5
Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals.
Soc Cogn Affect Neurosci. 2018 Feb 1;13(2):224-232. doi: 10.1093/scan/nsy002.
8
Can brain state be manipulated to emphasize individual differences in functional connectivity?
Neuroimage. 2017 Oct 15;160:140-151. doi: 10.1016/j.neuroimage.2017.03.064. Epub 2017 Mar 31.
9
Depression alters maternal extended amygdala response and functional connectivity during distress signals in attachment relationship.
Behav Brain Res. 2017 May 15;325(Pt B):290-296. doi: 10.1016/j.bbr.2017.02.045. Epub 2017 Mar 2.
10
Characterizing Attention with Predictive Network Models.
Trends Cogn Sci. 2017 Apr;21(4):290-302. doi: 10.1016/j.tics.2017.01.011. Epub 2017 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验