Suppr超能文献

解读脑生物标志物:解读基于机器学习的预测性神经影像学中的挑战与解决方案

Interpreting Brain Biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging.

作者信息

Jiang Rongtao, Woo Choong-Wan, Qi Shile, Wu Jing, Sui Jing

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA, 06520.

Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea, 16419.

出版信息

IEEE Signal Process Mag. 2022 Jul;39(4):107-118. doi: 10.1109/MSP.2022.3155951. Epub 2022 Jun 28.

Abstract

Predictive modeling of neuroimaging data (predictive neuroimaging) for evaluating individual differences in various behavioral phenotypes and clinical outcomes is of growing interest. However, the field is experiencing challenges regarding the interpretability of the results. Approaches to defining the specific contribution of functional connections, regions, or networks in prediction models are urgently needed, which may help explore the underlying mechanisms. In this article, we systematically review the methods and applications for interpreting brain signatures derived from predictive neuroimaging based on a survey of 326 research articles. Strengths, limitations, and the suitable conditions for major interpretation strategies are also deliberated. In-depth discussion of common issues in existing literature and the corresponding recommendations to address these pitfalls are provided. We highly recommend exhaustive validation on the reliability and interpretability of the biomarkers across multiple datasets and contexts, which thereby could translate technical advances in neuroimaging into concrete improvements in precision medicine.

摘要

利用神经影像数据进行预测建模(预测性神经影像)以评估各种行为表型和临床结果中的个体差异,正日益受到关注。然而,该领域在结果的可解释性方面正面临挑战。迫切需要确定功能连接、区域或网络在预测模型中的具体贡献的方法,这可能有助于探索潜在机制。在本文中,我们基于对326篇研究文章的调查,系统地回顾了用于解释从预测性神经影像中得出的脑特征的方法和应用。还讨论了主要解释策略的优势、局限性和适用条件。对现有文献中的常见问题进行了深入讨论,并提供了应对这些陷阱的相应建议。我们强烈建议在多个数据集和背景下对生物标志物的可靠性和可解释性进行详尽验证,从而将神经影像技术的进步转化为精准医学的具体改进。

相似文献

3
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.机器学习与神经影像学:评估其在精神病学中的应用。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798. doi: 10.1016/j.bpsc.2019.11.007. Epub 2019 Nov 27.
5
The challenges and prospects of brain-based prediction of behaviour.基于大脑的行为预测的挑战与展望。
Nat Hum Behav. 2023 Aug;7(8):1255-1264. doi: 10.1038/s41562-023-01670-1. Epub 2023 Jul 31.
6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Machine Learning in Neural Networks.神经网络中的机器学习。
Adv Exp Med Biol. 2019;1192:127-137. doi: 10.1007/978-981-32-9721-0_7.
9
Interpreting mental state decoding with deep learning models.深度学习模型解读心理状态解码。
Trends Cogn Sci. 2022 Nov;26(11):972-986. doi: 10.1016/j.tics.2022.07.003.

引用本文的文献

3
Rescuing missing data in connectome-based predictive modeling.在基于连接组的预测建模中挽救缺失数据。
Imaging Neurosci (Camb). 2024 Feb 2;2. doi: 10.1162/imag_a_00071. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验