Suppr超能文献

机器学习在临床诊断中的判别门位置。

Machine Learning of Discriminative Gate Locations for Clinical Diagnosis.

机构信息

Department of Computer Science, University of California, Irvine, California.

Informatics, J. Craig Venter Institute, La Jolla, California.

出版信息

Cytometry A. 2020 Mar;97(3):296-307. doi: 10.1002/cyto.a.23906. Epub 2019 Nov 5.

Abstract

High-throughput single-cell cytometry technologies have significantly improved our understanding of cellular phenotypes to support translational research and the clinical diagnosis of hematological and immunological diseases. However, subjective and ad hoc manual gating analysis does not adequately handle the increasing volume and heterogeneity of cytometry data for optimal diagnosis. Prior work has shown that machine learning can be applied to classify cytometry samples effectively. However, many of the machine learning classification results are either difficult to interpret without using characteristics of cell populations to make the classification, or suboptimal due to the use of inaccurate cell population characteristics derived from gating boundaries. To date, little has been done to optimize both the gating boundaries and the diagnostic accuracy simultaneously. In this work, we describe a fully discriminative machine learning approach that can simultaneously learn feature representations (e.g., combinations of coordinates of gating boundaries) and classifier parameters for optimizing clinical diagnosis from cytometry measurements. The approach starts from an initial gating position and then refines the position of the gating boundaries by gradient descent until a set of globally-optimized gates across different samples are achieved. The learning procedure is constrained by regularization terms encoding domain knowledge that encourage the algorithm to seek interpretable results. We evaluate the proposed approach using both simulated and real data, producing classification results on par with those generated via human expertise, in terms of both the positions of the gating boundaries and the diagnostic accuracy. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

摘要

高通量单细胞细胞术技术极大地提高了我们对细胞表型的理解,以支持转化研究和血液学及免疫学疾病的临床诊断。然而,主观和特定的手动门控分析不能充分处理细胞术数据的不断增加的量和异质性,以实现最佳诊断。先前的工作表明,可以应用机器学习有效地对细胞术样本进行分类。然而,许多机器学习分类结果要么难以解释,要么由于使用来自门控边界的不准确的细胞群体特征而不理想。迄今为止,很少有工作同时优化门控边界和诊断准确性。在这项工作中,我们描述了一种完全判别式机器学习方法,该方法可以同时学习特征表示(例如,门控边界坐标的组合)和分类器参数,以便从细胞术测量中优化临床诊断。该方法从初始门控位置开始,然后通过梯度下降来细化门控边界的位置,直到获得不同样本的全局优化门控。学习过程受到正则化项的约束,正则化项编码了鼓励算法寻求可解释结果的领域知识。我们使用模拟数据和真实数据评估了所提出的方法,在门控边界的位置和诊断准确性方面,生成的分类结果与通过人工专家生成的结果相当。©2019 作者。细胞术杂志 A 版由 Wiley 期刊出版公司代表国际细胞术促进协会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0376/7079150/a3a2bd28fe78/CYTO-97-296-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验