Suppr超能文献

通过表示学习对罕见病相关细胞亚群进行敏感检测。

Sensitive detection of rare disease-associated cell subsets via representation learning.

机构信息

Institute for Molecular Systems Biology, Department of Biology, ETH Zurich, Auguste-Piccard-Hof 1, Zurich 8093, Switzerland.

Swiss Institute of Bioinformatics, Zurich 8093, Switzerland.

出版信息

Nat Commun. 2017 Apr 6;8:14825. doi: 10.1038/ncomms14825.

Abstract

Rare cell populations play a pivotal role in the initiation and progression of diseases such as cancer. However, the identification of such subpopulations remains a difficult task. This work describes CellCnn, a representation learning approach to detect rare cell subsets associated with disease using high-dimensional single-cell measurements. Using CellCnn, we identify paracrine signalling-, AIDS onset- and rare CMV infection-associated cell subsets in peripheral blood, and extremely rare leukaemic blast populations in minimal residual disease-like situations with frequencies as low as 0.01%.

摘要

稀有细胞群体在癌症等疾病的发生和发展中起着关键作用。然而,此类亚群的鉴定仍然是一项艰巨的任务。本工作描述了 CellCnn,这是一种使用高维单细胞测量来检测与疾病相关的稀有细胞亚群的表示学习方法。使用 CellCnn,我们在外周血中鉴定了旁分泌信号、艾滋病发病和罕见 CMV 感染相关的细胞亚群,以及在类似微小残留病的情况下频率低至 0.01%的极罕见的白血病原始细胞群体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验