Suppr超能文献

硫化氢在氧化应激诱导的神经退行性疾病中的治疗潜力。

Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases.

机构信息

Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea.

Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea.

出版信息

Int J Med Sci. 2019 Sep 20;16(10):1386-1396. doi: 10.7150/ijms.36516. eCollection 2019.

Abstract

Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the antioxidant function of hydrogen sulfide (HS), which also acts through the potassium (K/K) ion channel and calcium (Ca) ion channels to increase glutathione (GSH) levels. The pharmacological activity of HS is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase (Gpx), and superoxide dismutase (SOD) neutralize HO-induced oxidative damage in mitochondria. The main purpose of this review is to discuss specific causes and effects of mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the antioxidant functions of HS to support the development of advancements in neurodegenerative disease treatment.

摘要

氧化磷酸化是许多细胞满足其能量需求的能量产生来源。内源性活性氧物种(ROS)是氧化磷酸化的副产物。ROS 的形成是由于氧化磷酸化效率低下,导致影响线粒体代谢的氧化应激。慢性氧化应激导致神经退行性疾病的发生,如阿尔茨海默病(AD)、帕金森病(PD)、亨廷顿病(HD)和肌萎缩侧索硬化症(ALS)。氧化应激的直接后果包括脂质过氧化、蛋白质氧化和线粒体脱氧核糖核酸(mtDNA)突变,这些都会导致神经元细胞死亡。已发现淀粉样蛋白-β(Aβ)蛋白与线粒体结合是 AD 的一个促成因素。在 PD 和 HD 中,分别报道了α-突触核蛋白(α-syn)和亨廷顿(Htt)基因突变加剧氧化应激的影响。同样,由于线粒体复合物 II 和 IV 的失调,在 ALS 中也会发生线粒体动力学和呼吸链的异常。然而,氧化应激诱导的神经退行性疾病中的功能障碍可以通过硫化氢(HS)的抗氧化功能来减轻,HS 还通过钾(K/K)离子通道和钙(Ca)离子通道发挥作用,增加谷胱甘肽(GSH)水平。HS 的药理活性由无机和有机化合物共同发挥。GSH、谷胱甘肽过氧化物酶(Gpx)和超氧化物歧化酶(SOD)可中和线粒体中 HO 诱导的氧化损伤。本综述的主要目的是讨论线粒体氧化应激在神经退行性疾病中的具体原因和影响,以及 HS 的抗氧化功能如何影响这些疾病,以支持神经退行性疾病治疗进展的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d1a/6818192/c4559fe64c93/ijmsv16p1386g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验