Suppr超能文献

推特上的精神疾病和双相情感障碍:对污名化和社会支持的影响。

Mental illness and bipolar disorder on Twitter: implications for stigma and social support.

机构信息

Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA.

Microsoft Research, Herzliya, Israel.

出版信息

J Ment Health. 2020 Apr;29(2):191-199. doi: 10.1080/09638237.2019.1677878. Epub 2019 Nov 7.

Abstract

Mental illness (MI), and particularly, bipolar disorder (BD), are highly stigmatized. However, it is unknown if this stigma is also represented on social media. Characterize Twitter-based stigma and social support messaging ("tweets") about mental health/illness (MH)/MI and BD and determine which tweets garnered retweets. We collected tweets about MH/MI and BD during a three-month period and analyzed tweets from dates with the most tweets ("spikes"), an indicator of topic interest. A sample was manually content analyzed, and the remainder were classified using machine learning (logistic regression) by topic, stigma, and social support messaging. We compared stigma and support toward MH/MI versus BD and used logistic regression to quantify tweet features associated with retweets, to assess tweet reach. Of the 1,270,902 tweets analyzed, 94.7% discussed MH/MI and 5.3% discussed BD. Spikes coincided with a celebrity's death and a MH awareness campaign. Although the sample contained more support than stigma messaging, BD tweets contained more stigma and less support than MH/MI tweets. However, stigma messaging was infrequently retweeted, and users often retweeted personal MH experiences. These findings demonstrate opportunities for social media advocacy to reduce stigma and increase displays of social support towards people living with BD.

摘要

精神疾病(MI),特别是双相情感障碍(BD),受到高度污名化。然而,目前尚不清楚这种污名是否也存在于社交媒体上。本研究旨在描述基于 Twitter 的精神健康/疾病(MH)/MI 和 BD 的污名和社会支持信息(“推文”),并确定哪些推文获得了转发。我们在三个月的时间内收集了有关 MH/MI 和 BD 的推文,并分析了具有最多推文的日期(“峰值”)的推文,这是话题兴趣的一个指标。我们对 MH/MI 与 BD 的推文进行了手动内容分析,其余推文则通过机器学习(逻辑回归)按主题、污名和社会支持信息进行分类。我们比较了 MH/MI 与 BD 的污名和支持程度,并使用逻辑回归来量化与转发相关的推文特征,以评估推文的传播范围。在分析的 1270902 条推文中,94.7%讨论了 MH/MI,5.3%讨论了 BD。峰值与名人去世和 MH 意识宣传活动同时发生。尽管样本中支持性信息多于污名性信息,但 BD 推文比 MH/MI 推文包含更多的污名和更少的支持。然而,污名性信息很少被转发,用户经常转发个人的 MH 经历。这些发现表明,社交媒体宣传有机会减少 BD 患者的污名化,并增加对他们的社会支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验