Suppr超能文献

通过高光谱成像优化大麦籽粒养分预测的程序。

Optimizing the procedure of grain nutrient predictions in barley via hyperspectral imaging.

机构信息

Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.

Fraunhofer Institute for Factory Operation and Automation (IFF), Magdeburg, Germany.

出版信息

PLoS One. 2019 Nov 7;14(11):e0224491. doi: 10.1371/journal.pone.0224491. eCollection 2019.

Abstract

Hyperspectral imaging enables researchers and plant breeders to analyze various traits of interest like nutritional value in high throughput. In order to achieve this, the optimal design of a reliable calibration model, linking the measured spectra with the investigated traits, is necessary. In the present study we investigated the impact of different regression models, calibration set sizes and calibration set compositions on prediction performance. For this purpose, we analyzed concentrations of six globally relevant grain nutrients of the wild barley population HEB-YIELD as case study. The data comprised 1,593 plots, grown in 2015 and 2016 at the locations Dundee and Halle, which have been entirely analyzed through traditional laboratory methods and hyperspectral imaging. The results indicated that a linear regression model based on partial least squares outperformed neural networks in this particular data modelling task. There existed a positive relationship between the number of samples in a calibration model and prediction performance, with a local optimum at a calibration set size of ~40% of the total data. The inclusion of samples from several years and locations could clearly improve the predictions of the investigated nutrient traits at small calibration set sizes. It should be stated that the expansion of calibration models with additional samples is only useful as long as they are able to increase trait variability. Models obtained in a certain environment were only to a limited extent transferable to other environments. They should therefore be successively upgraded with new calibration data to enable a reliable prediction of the desired traits. The presented results will assist the design and conceptualization of future hyperspectral imaging projects in order to achieve reliable predictions. It will in general help to establish practical applications of hyperspectral imaging systems, for instance in plant breeding concepts.

摘要

高光谱成像使研究人员和植物育种家能够高通量分析各种感兴趣的特性,如营养价值。为了实现这一目标,需要设计一个可靠的校准模型,将测量的光谱与研究的特性联系起来。在本研究中,我们研究了不同回归模型、校准集大小和校准集组成对预测性能的影响。为此,我们分析了野生大麦群体 HEB-YIELD 的六种全球相关谷物营养物的浓度作为案例研究。该数据包括 1593 个地块,于 2015 年和 2016 年在邓迪和哈勒的地点种植,这些地块已经通过传统的实验室方法和高光谱成像进行了全面分析。结果表明,基于偏最小二乘的线性回归模型在这项特定的数据建模任务中优于神经网络。在校准模型中,样本数量与预测性能之间存在正相关关系,在校准集大小约为总数据的 40%时存在局部最优。在小校准集大小下,包含来自几年和多个地点的样本可以明显改善对所研究的营养特性的预测。应该指出的是,只要能够增加特性的可变性,扩展校准模型的样本数量是有用的。在特定环境中获得的模型仅在有限程度上可以转移到其他环境。因此,它们应该用新的校准数据不断升级,以实现对所需特性的可靠预测。所呈现的结果将有助于设计和概念化未来的高光谱成像项目,以实现可靠的预测。它将有助于建立高光谱成像系统的实际应用,例如在植物育种概念中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16e6/6837513/f25c010d1bf2/pone.0224491.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验