Kao Mu-Rong, Kuo Hsion-Wen, Lee Cheng-Chung, Huang Kuan-Ying, Huang Ting-Yen, Li Chen-Wei, Chen C Will, Wang Andrew H-J, Yu Su-May, Ho Tuan-Hua David
1Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan, ROC.
2Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.
Biotechnol Biofuels. 2019 Nov 2;12:258. doi: 10.1186/s13068-019-1599-0. eCollection 2019.
To produce second-generation biofuels, enzymatic catalysis is required to convert cellulose from lignocellulosic biomass into fermentable sugars. β-Glucosidases finalize the process by hydrolyzing cellobiose into glucose, so the efficiency of cellulose hydrolysis largely depends on the quantity and quality of these enzymes used during saccharification. Accordingly, to reduce biofuel production costs, new microbial strains are needed that can produce highly efficient enzymes on a large scale.
We heterologously expressed the fungal β-glucosidase D2-BGL from a Taiwanese indigenous fungus in for constitutive production by fermentation. Recombinant D2-BGL presented significantly higher substrate affinity than the commercial β-glucosidase Novozyme 188 (N188; = 0.2 vs 2.14 mM for -nitrophenyl β-d-glucopyranoside and 0.96 vs 2.38 mM for cellobiose). When combined with RUT-C30 cellulases, it hydrolyzed acid-pretreated lignocellulosic biomasses more efficiently than the commercial cellulase mixture CTec3. The extent of conversion from cellulose to glucose was 83% for sugarcane bagasse and 63% for rice straws. Compared to N188, use of D2-BGL halved the time necessary to produce maximal levels of ethanol by a semi-simultaneous saccharification and fermentation process. We upscaled production of recombinant D2-BGL to 33.6 U/mL within 15 days using a 1-ton bioreactor. Crystal structure analysis revealed that D2-BGL belongs to glycoside hydrolase (GH) family 3. Removing the N-glycosylation N68 or O-glycosylation T431 residues by site-directed mutagenesis negatively affected enzyme production in . The F256 substrate-binding residue in D2-BGL is located in a shorter loop surrounding the active site pocket relative to that of β-glucosidases, and this short loop is responsible for its high substrate affinity toward cellobiose.
D2-BGL is an efficient supplement for lignocellulosic biomass saccharification, and we upscaled production of this enzyme using a 1-ton bioreactor. Enzyme production could be further improved using optimized fermentation, which could reduce biofuel production costs. Our structure analysis of D2-BGL offers new insights into GH3 β-glucosidases, which will be useful for strain improvements via a structure-based mutagenesis approach.
为了生产第二代生物燃料,需要酶催化将木质纤维素生物质中的纤维素转化为可发酵糖。β-葡萄糖苷酶通过将纤维二糖水解为葡萄糖来完成这一过程,因此纤维素水解的效率很大程度上取决于糖化过程中所用这些酶的数量和质量。因此,为了降低生物燃料的生产成本,需要能够大规模生产高效酶的新微生物菌株。
我们在中异源表达了来自台湾本土真菌的真菌β-葡萄糖苷酶D2-BGL,用于通过发酵进行组成型生产。重组D2-BGL对底物的亲和力明显高于商业β-葡萄糖苷酶诺维信188(N188;对β-D-吡喃葡萄糖苷对硝基苯酯的Km值为0.2 mM,而N188为2.14 mM;对纤维二糖的Km值为0.96 mM,而N188为2.38 mM)。当与RUT-C30纤维素酶联合使用时,它比商业纤维素酶混合物CTec3更有效地水解酸预处理的木质纤维素生物质。甘蔗渣的纤维素向葡萄糖的转化率为83%,稻草的转化率为63%。与N188相比,使用D2-BGL通过半同步糖化发酵过程生产最大量乙醇所需的时间减半。我们使用1吨生物反应器在15天内将重组D2-BGL的产量扩大到33.6 U/mL。晶体结构分析表明,D2-BGL属于糖苷水解酶(GH)家族3。通过定点诱变去除N-糖基化N68或O-糖基化T431残基对其在中的酶产量有负面影响。与β-葡萄糖苷酶相比,D2-BGL中的F256底物结合残基位于围绕活性位点口袋的较短环中,这个短环是其对纤维二糖具有高底物亲和力的原因。
D2-BGL是木质纤维素生物质糖化的有效补充剂,我们使用1吨生物反应器扩大了该酶的生产规模。通过优化发酵可以进一步提高酶产量,这可以降低生物燃料的生产成本。我们对D2-BGL的结构分析为GH3β-葡萄糖苷酶提供了新的见解,这将有助于通过基于结构的诱变方法改进菌株。