Suppr超能文献

吡嗪酰胺杀菌活性的药理学和分子机制。

Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide.

机构信息

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; Current address: MSD Translational Medicine Research Centre, Merck Research Laboratories, 8 Biomedical Grove, Singapore 138665, Republic of Singapore.

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.

出版信息

Trends Pharmacol Sci. 2019 Dec;40(12):930-940. doi: 10.1016/j.tips.2019.10.005. Epub 2019 Nov 6.

Abstract

Inclusion of pyrazinamide (PZA) in the tuberculosis (TB) drug regimen during the 1970s enabled a reduction in treatment duration from 12 to 6 months. PZA has this remarkable effect in patients despite displaying poor potency against Mycobacterium tuberculosis (Mtb) in vitro. The pharmacological basis for the in vivo sterilizing activity of the drug has remained obscure and its bacterial target controversial. Recently it was shown that PZA penetrates necrotic caseous TB lung lesions and kills nongrowing, drug-tolerant bacilli. Furthermore, it was uncovered that PZA inhibits bacterial Coenzyme A biosynthesis. It may block this pathway by triggering degradation of its target, aspartate decarboxylase. The elucidation of the pharmacological and molecular mechanisms of PZA provides the basis for the rational discovery of the next-generation PZA with improved in vitro potency while maintaining attractive pharmacological properties.

摘要

在上世纪 70 年代,将吡嗪酰胺(PZA)纳入结核病(TB)药物治疗方案中,使治疗时间从 12 个月缩短至 6 个月。尽管 PZA 在体外对结核分枝杆菌(Mtb)的活性较差,但它对患者有这种显著的作用。该药物在体内杀菌活性的药理学基础仍然不清楚,其细菌靶标也存在争议。最近的研究表明,PZA 能够穿透坏死干酪样肺结核病变,并杀死非生长、耐药的细菌。此外,还发现 PZA 抑制细菌辅酶 A 的生物合成。它可能通过触发其靶标天冬氨酸脱羧酶的降解来阻断该途径。PZA 的药理学和分子机制的阐明为合理发现下一代 PZA 提供了基础,使其在保持有吸引力的药理学特性的同时,提高了体外活性。

相似文献

1
Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide.
Trends Pharmacol Sci. 2019 Dec;40(12):930-940. doi: 10.1016/j.tips.2019.10.005. Epub 2019 Nov 6.
2
Pyrazinamide triggers degradation of its target aspartate decarboxylase.
Nat Commun. 2020 Apr 3;11(1):1661. doi: 10.1038/s41467-020-15516-1.
3
Impact of immunopathology on the antituberculous activity of pyrazinamide.
J Exp Med. 2018 Aug 6;215(8):1975-1986. doi: 10.1084/jem.20180518. Epub 2018 Jul 17.
4
Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update.
Adv Med Sci. 2016 Mar;61(1):63-71. doi: 10.1016/j.advms.2015.09.007. Epub 2015 Oct 1.
5
Computational discovery of potent drugs to improve the treatment of pyrazinamide resistant Mycobacterium tuberculosis mutants.
J Cell Biochem. 2018 Sep;119(9):7328-7338. doi: 10.1002/jcb.27033. Epub 2018 May 15.
7
Impact of the host environment on the antitubercular action of pyrazinamide.
EBioMedicine. 2019 Nov;49:374-380. doi: 10.1016/j.ebiom.2019.10.014. Epub 2019 Oct 25.
9
The association between sterilizing activity and drug distribution into tuberculosis lesions.
Nat Med. 2015 Oct;21(10):1223-7. doi: 10.1038/nm.3937. Epub 2015 Sep 7.

引用本文的文献

1
Enhancing diagnostic efficiency of pyrazinamide resistance in via modified MGIT assay and genotypic correlation.
Curr Res Microb Sci. 2025 Aug 23;9:100462. doi: 10.1016/j.crmicr.2025.100462. eCollection 2025.
4
Prevalence and Clinical Implications of Pyrazinamide Resistance in Newly Diagnosed TB Patients in Uganda.
Infect Drug Resist. 2025 Mar 29;18:1629-1635. doi: 10.2147/IDR.S491770. eCollection 2025.
6
Tuberculosis vaccines and therapeutic drug: challenges and future directions.
Mol Biomed. 2025 Jan 22;6(1):4. doi: 10.1186/s43556-024-00243-6.
7
Breaking barriers: The potential of nanosystems in antituberculosis therapy.
Bioact Mater. 2024 May 17;39:106-134. doi: 10.1016/j.bioactmat.2024.05.013. eCollection 2024 Sep.
8
Targeting pH-driven adaptation.
Microbiology (Reading). 2024 May;170(5). doi: 10.1099/mic.0.001458.
9
3D Hydrogel Culture System Recapitulates Key Tuberculosis Phenotypes and Demonstrates Pyrazinamide Efficacy.
Adv Healthc Mater. 2025 Feb;14(5):e2304299. doi: 10.1002/adhm.202304299. Epub 2024 May 1.
10
Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease.
Nat Rev Drug Discov. 2024 May;23(5):381-403. doi: 10.1038/s41573-024-00897-5. Epub 2024 Feb 28.

本文引用的文献

1
Pyrazinamide triggers degradation of its target aspartate decarboxylase.
Nat Commun. 2020 Apr 3;11(1):1661. doi: 10.1038/s41467-020-15516-1.
4
Mutations in Efflux Pump Rv1258c (Tap) Cause Resistance to Pyrazinamide, Isoniazid, and Streptomycin in .
Front Microbiol. 2019 Feb 19;10:216. doi: 10.3389/fmicb.2019.00216. eCollection 2019.
5
Impact of immunopathology on the antituberculous activity of pyrazinamide.
J Exp Med. 2018 Aug 6;215(8):1975-1986. doi: 10.1084/jem.20180518. Epub 2018 Jul 17.
8
Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis.
Nat Genet. 2018 Feb;50(2):307-316. doi: 10.1038/s41588-017-0029-0. Epub 2018 Jan 22.
9
Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum.
Antimicrob Agents Chemother. 2018 Jan 25;62(2). doi: 10.1128/AAC.02266-17. Print 2018 Feb.
10
Single nucleotide polymorphisms in efflux pumps genes in extensively drug resistant Mycobacterium tuberculosis isolates from Pakistan.
Tuberculosis (Edinb). 2017 Dec;107:20-30. doi: 10.1016/j.tube.2017.07.012. Epub 2017 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验