State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun. 2019 Nov 8;10(1):5112. doi: 10.1038/s41467-019-13119-z.
The modification of soil organic matter (SOM) decomposition by plant carbon (C) input (priming effect) represents a critical biogeochemical process that controls soil C dynamics. However, the patterns and drivers of the priming effect remain hidden, especially over broad geographic scales under various climate and soil conditions. By combining systematic field and laboratory analyses based on multiple analytical and statistical approaches, we explore the determinants of priming intensity along a 2200 km grassland transect on the Tibetan Plateau. Our results show that SOM stability characterized by chemical recalcitrance and physico-chemical protection explains more variance in the priming effect than plant, soil and microbial properties. High priming intensity (up to 137% of basal respiration) is associated with complex SOM chemical structures and low mineral-organic associations. The dependence of priming effect on SOM stabilization mechanisms should be considered in Earth System Models to accurately predict soil C dynamics under changing environments.
植物碳(C)输入(激发效应)对土壤有机质(SOM)分解的改变代表了控制土壤 C 动态的关键生物地球化学过程。然而,激发效应的模式和驱动因素仍然隐藏着,特别是在不同气候和土壤条件下,在广阔的地理尺度上。通过结合基于多种分析和统计方法的系统野外和实验室分析,我们探讨了青藏高原 2200 公里草原样带上激发强度的决定因素。我们的结果表明,以化学稳定性和物理化学保护为特征的 SOM 稳定性比植物、土壤和微生物特性解释了激发效应更多的变异性。高激发强度(高达基础呼吸的 137%)与复杂的 SOM 化学结构和低矿物-有机结合有关。在地球系统模型中,应该考虑激发效应对 SOM 稳定机制的依赖性,以准确预测变化环境下的土壤 C 动态。