Suppr超能文献

利用深度学习技术检测摩托车头盔使用情况。

Detecting motorcycle helmet use with deep learning.

机构信息

Department of Psychology and Ergonomics, Technische Universität Berlin, Marchstraße 12, 10587 Berlin, Germany.

Department of Computer and Information Science, Universität Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany.

出版信息

Accid Anal Prev. 2020 Jan;134:105319. doi: 10.1016/j.aap.2019.105319. Epub 2019 Nov 6.

Abstract

The continuous motorization of traffic has led to a sustained increase in the global number of road related fatalities and injuries. To counter this, governments are focusing on enforcing safe and law-abiding behavior in traffic. However, especially in developing countries where the motorcycle is the main form of transportation, there is a lack of comprehensive data on the safety-critical behavioral metric of motorcycle helmet use. This lack of data prohibits targeted enforcement and education campaigns which are crucial for injury prevention. Hence, we have developed an algorithm for the automated registration of motorcycle helmet usage from video data, using a deep learning approach. Based on 91,000 annotated frames of video data, collected at multiple observation sites in 7 cities across the country of Myanmar, we trained our algorithm to detect active motorcycles, the number and position of riders on the motorcycle, as well as their helmet use. An analysis of the algorithm's accuracy on an annotated test data set, and a comparison to available human-registered helmet use data reveals a high accuracy of our approach. Our algorithm registers motorcycle helmet use rates with an accuracy of -4.4% and +2.1% in comparison to a human observer, with minimal training for individual observation sites. Without observation site specific training, the accuracy of helmet use detection decreases slightly, depending on a number of factors. Our approach can be implemented in existing roadside traffic surveillance infrastructure and can facilitate targeted data-driven injury prevention campaigns with real-time speed. Implications of the proposed method, as well as measures that can further improve detection accuracy are discussed.

摘要

交通的持续机动化导致与道路相关的全球死亡和伤害人数持续增加。为了应对这一问题,各国政府专注于加强交通安全和守法行为。然而,特别是在摩托车是主要交通方式的发展中国家,缺乏关于摩托车头盔使用这一安全关键行为指标的综合数据。这种数据的缺乏限制了有针对性的执法和教育活动,而这些活动对于预防伤害至关重要。因此,我们开发了一种基于深度学习的从视频数据中自动记录摩托车头盔使用情况的算法。我们基于在缅甸全国 7 个城市的多个观察点收集的 91,000 个标注视频帧数据对算法进行了训练,以检测活动摩托车、摩托车上骑手的数量和位置以及他们的头盔使用情况。我们对算法在标注测试数据集上的准确性进行了分析,并将其与现有的人工标注头盔使用数据进行了比较,结果表明我们的方法具有很高的准确性。与人工观察者相比,我们的算法在比较头盔使用的准确率时,准确率分别为-4.4%和+2.1%,而且对各个观察点的训练要求最小。在没有针对特定观察点进行训练的情况下,头盔使用检测的准确性会根据一些因素略有下降。我们的方法可以在现有的路边交通监控基础设施中实施,并可以通过实时速度来促进有针对性的数据驱动的伤害预防活动。我们讨论了所提出方法的意义以及可以进一步提高检测准确性的措施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验