Johns Hopkins International Injury Research Unit, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Johns Hopkins International Injury Research Unit, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, E-8136, Baltimore, MD, 21205, USA.
BMC Public Health. 2024 Jun 20;24(1):1645. doi: 10.1186/s12889-024-19118-0.
INTRODUCTION: Wearing a helmet reduces the risk of head injuries substantially in the event of a motorcycle crash. Countries around the world are committed to promoting helmet use, but the progress has been slow and uneven. There is an urgent need for large-scale data collection for situation assessment and intervention evaluation. METHODS: This study proposes a scalable, low-cost algorithm to estimate helmet-wearing rates. Applying the state-of-the-art deep learning technique for object detection to images acquired from Google Street View, the algorithm has the potential to provide accurate estimates at the global level. RESULTS: Trained on a sample of 3995 images, the algorithm achieved high accuracy. The out-of-sample prediction results for all three object classes (helmets, drivers, and passengers) reveal a precision of 0.927, a recall value of 0.922, and a mean average precision at 50 (mAP50) of 0.956. DISCUSSION: The remarkable model performance suggests the algorithm's capacity to generate accurate estimates of helmet-wearing rates from an image source with global coverage. The significant enhancement in the availability of helmet usage data resulting from this approach could bolster progress tracking and facilitate evidence-based policymaking for helmet wearing globally.
简介:在发生摩托车事故时,佩戴头盔可大大降低头部受伤的风险。世界各国都致力于推广头盔使用,但进展缓慢且不均衡。因此,迫切需要进行大规模的数据收集,以进行情况评估和干预效果评估。
方法:本研究提出了一种可扩展的低成本算法来估计头盔佩戴率。该算法应用最先进的目标检测深度学习技术,对从谷歌街景获取的图像进行分析,有望在全球范围内提供准确的估计值。
结果:在对 3995 张图像的样本进行训练后,该算法实现了高精度。对所有三个目标类别(头盔、驾驶员和乘客)的样本外预测结果显示,精度为 0.927,召回率为 0.922,mAP50(平均精度均值)为 0.956。
讨论:出色的模型性能表明,该算法有能力从具有全球覆盖范围的图像源生成头盔佩戴率的准确估计值。这种方法显著提高了头盔使用数据的可用性,从而有助于跟踪进展并为全球范围内的头盔佩戴提供循证决策。
Public Health. 2017-3
BMC Public Health. 2023-1-5
Cochrane Database Syst Rev. 2004
Accid Anal Prev. 1999-5
Accid Anal Prev. 2011-11-16
Cochrane Database Syst Rev. 2008-1-23
Accid Anal Prev. 2019-11-6
J Med Internet Res. 2019-4-5
Comput Intell Neurosci. 2018-2-1
Sensors (Basel). 2017-4-20
IEEE Trans Pattern Anal Mach Intell. 2016-6-6