文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过可扩展的低成本算法估计头盔佩戴率:深度学习与谷歌街景的新颖融合。

Estimating helmet wearing rates via a scalable, low-cost algorithm: a novel integration of deep learning and google street view.

机构信息

Johns Hopkins International Injury Research Unit, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Johns Hopkins International Injury Research Unit, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, E-8136, Baltimore, MD, 21205, USA.

出版信息

BMC Public Health. 2024 Jun 20;24(1):1645. doi: 10.1186/s12889-024-19118-0.


DOI:10.1186/s12889-024-19118-0
PMID:38902622
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11188290/
Abstract

INTRODUCTION: Wearing a helmet reduces the risk of head injuries substantially in the event of a motorcycle crash. Countries around the world are committed to promoting helmet use, but the progress has been slow and uneven. There is an urgent need for large-scale data collection for situation assessment and intervention evaluation. METHODS: This study proposes a scalable, low-cost algorithm to estimate helmet-wearing rates. Applying the state-of-the-art deep learning technique for object detection to images acquired from Google Street View, the algorithm has the potential to provide accurate estimates at the global level. RESULTS: Trained on a sample of 3995 images, the algorithm achieved high accuracy. The out-of-sample prediction results for all three object classes (helmets, drivers, and passengers) reveal a precision of 0.927, a recall value of 0.922, and a mean average precision at 50 (mAP50) of 0.956. DISCUSSION: The remarkable model performance suggests the algorithm's capacity to generate accurate estimates of helmet-wearing rates from an image source with global coverage. The significant enhancement in the availability of helmet usage data resulting from this approach could bolster progress tracking and facilitate evidence-based policymaking for helmet wearing globally.

摘要

简介:在发生摩托车事故时,佩戴头盔可大大降低头部受伤的风险。世界各国都致力于推广头盔使用,但进展缓慢且不均衡。因此,迫切需要进行大规模的数据收集,以进行情况评估和干预效果评估。

方法:本研究提出了一种可扩展的低成本算法来估计头盔佩戴率。该算法应用最先进的目标检测深度学习技术,对从谷歌街景获取的图像进行分析,有望在全球范围内提供准确的估计值。

结果:在对 3995 张图像的样本进行训练后,该算法实现了高精度。对所有三个目标类别(头盔、驾驶员和乘客)的样本外预测结果显示,精度为 0.927,召回率为 0.922,mAP50(平均精度均值)为 0.956。

讨论:出色的模型性能表明,该算法有能力从具有全球覆盖范围的图像源生成头盔佩戴率的准确估计值。这种方法显著提高了头盔使用数据的可用性,从而有助于跟踪进展并为全球范围内的头盔佩戴提供循证决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/166501f9bdc5/12889_2024_19118_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/b62006f7735c/12889_2024_19118_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/0e7915cfacd4/12889_2024_19118_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/958c1ea79c65/12889_2024_19118_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/166501f9bdc5/12889_2024_19118_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/b62006f7735c/12889_2024_19118_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/0e7915cfacd4/12889_2024_19118_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/958c1ea79c65/12889_2024_19118_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/11188290/166501f9bdc5/12889_2024_19118_Fig4_HTML.jpg

相似文献

[1]
Estimating helmet wearing rates via a scalable, low-cost algorithm: a novel integration of deep learning and google street view.

BMC Public Health. 2024-6-20

[2]
Helmet wearing in Kenya: prevalence, knowledge, attitude, practice and implications.

Public Health. 2017-3

[3]
Effective factors of improved helmet use in motorcyclists: a systematic review.

BMC Public Health. 2023-1-5

[4]
Helmet wearing behavior where people often ride motorcycle in Ethiopia: A cross-sectional study.

PLoS One. 2022

[5]
Helmets for preventing injury in motorcycle riders.

Cochrane Database Syst Rev. 2004

[6]
The prevalence of non-standard helmet use and head injuries among motorcycle riders.

Accid Anal Prev. 1999-5

[7]
Does wearing helmets reduce motorcycle-related death? A global evaluation.

Accid Anal Prev. 2011-11-16

[8]
Using street imagery and crowdsourcing internet marketplaces to measure motorcycle helmet use in Bangkok, Thailand.

Inj Prev. 2020-4

[9]
Helmets for preventing injury in motorcycle riders.

Cochrane Database Syst Rev. 2008-1-23

[10]
Effectiveness of different types of motorcycle helmets and effects of their improper use on head injuries.

Int J Epidemiol. 2011-3-9

本文引用的文献

[1]
Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection.

Sustain Cities Soc. 2021-2

[2]
Detecting motorcycle helmet use with deep learning.

Accid Anal Prev. 2019-11-6

[3]
Crowdsourcing for Food Purchase Receipt Annotation via Amazon Mechanical Turk: A Feasibility Study.

J Med Internet Res. 2019-4-5

[4]
Deep Learning for Computer Vision: A Brief Review.

Comput Intell Neurosci. 2018-2-1

[5]
Deep Count: Fruit Counting Based on Deep Simulated Learning.

Sensors (Basel). 2017-4-20

[6]
Characteristics of Moderate and Severe Traumatic Brain Injury of Motorcycle Crashes in Bandung, Indonesia.

World Neurosurg. 2017-4

[7]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[8]
Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior.

Am J Ment Defic. 1981-9

[9]
An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers.

Biometrics. 1977-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索