Suppr超能文献

利用中草药样品联排色谱数据集的数据挖掘策略对离子同位素进行标定的算法。

An algorithm to calibrate ionic isotopes using data mining strategy in hyphenated chromatographic datasets from herbal samples.

机构信息

Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China.

Xiangtan Central Hospital, Xiangtan 411100, PR China.

出版信息

J Chromatogr A. 2020 Feb 22;1613:460668. doi: 10.1016/j.chroma.2019.460668. Epub 2019 Oct 31.

Abstract

The bottleneck of analytical instrument itself and non-ideal instrumental performance will produce a certain degree of drifts between the measured isotopes and the true values. An AAID-IC algorithm was thereby proposed to keep the isotopic distributions more accurate in hyphenated instruments, e.g. Gas Chromatography (GC)/ Liquid Chromatography (LC) - Mass Spectrometry (MS). During this data mining process, chemical information will be fully used from dozens of data points in retention time (rt) dimension: the target isotopes were firstly re-constructed in mass charge ratio (m/z) dimension; their re-calculation values were then averaged from an interesting rt zone; the calibration functions were followed established based on a well-defined series of calibration ions. It is worth mentioning that natural metabolites in complex samples can be identified as reference materials to amend the target isotopes. Next, the corrected mass axes (m/z values)/isotope abundances were transformed into an ionic isotopic curve using Gaussian box. Taking herbal sample as an example, AAID-IC can better reduce the systematic and random errors of the m/z ions in one run environment, whether it's profile or bar graph from any type of MS and any ionization method employed. Finally, the calibrated values can be utilized to deduce the elemental compositions of molecular (fragment) ions in GC/LC-MS determination.

摘要

分析仪器本身的瓶颈和不理想的仪器性能会导致测量同位素与真实值之间产生一定程度的偏差。为此,提出了一种 AAID-IC 算法,以保持在联用仪器(如气相色谱(GC)/液相色谱(LC)-质谱(MS))中同位素分布更准确。在这个数据挖掘过程中,将充分利用几十个个保留时间(rt)维度的数据点中的化学信息:首先在质荷比(m/z)维度上重建目标同位素;然后从感兴趣的 rt 区域计算它们的重新计算值;然后根据一系列定义明确的校准离子建立校准函数。值得一提的是,复杂样品中的天然代谢物可以作为参考物质来修正目标同位素。接下来,使用高斯框将校正后的质量轴(m/z 值)/同位素丰度转换为离子同位素曲线。以草药样品为例,AAID-IC 可以更好地减少在一个运行环境中 m/z 离子的系统和随机误差,无论是来自任何类型的 MS 的轮廓图还是条形图,还是采用的任何电离方法。最后,可以利用校准值推导出 GC/LC-MS 测定中分子(碎片)离子的元素组成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验