Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
Comput Biol Med. 2019 Dec;115:103516. doi: 10.1016/j.compbiomed.2019.103516. Epub 2019 Oct 22.
Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.
在急性缺血性脑卒中患者的治疗中,治疗选择变得越来越重要。临床变量和影像学图像生物标志物(年龄、卒中前 mRS、NIHSS、闭塞部位、ASPECTS 等)在治疗选择和预后中起着重要作用。影像学生物标志物需要专家标注,并且存在观察者间的变异性。最近,深度学习已被引入以再现这些影像学图像生物标志物。在这项工作中,我们没有再现这些生物标志物,而是研究了深度学习技术,以使用 CT 血管造影图像建立直接预测血管内治疗(EVT)后良好再灌注和良好功能结局的模型。这些模型不需要图像标注,并且计算速度很快。我们使用传统的影像学图像生物标志物将深度学习模型与机器学习模型进行比较。我们探索了残差神经网络(ResNet)架构,通过结构化感受野(RFNN)和自动编码器(AE)对其进行了调整,以实现网络权重初始化。我们进一步包括模型可视化技术,以深入了解网络的决策过程。我们在 1301 名患者的 MR CLEAN 登记数据集上应用了这些方法。在四个交叉验证折叠中的三个折叠中,深度学习模型在功能结局(平均 AUC 为 0.71)和所有折叠中在再灌注方面(平均 AUC 为 0.65)都优于使用传统影像学图像生物标志物的模型。模型可视化显示,动脉是功能结局预测的相关特征。具有 RFNN 的 ResNet 模型获得了最佳结果。自动编码器初始化通常可以提高结果。我们得出结论,在我们的数据集上,使用深度学习方法的自动图像分析在脑卒中结局预测方面优于影像学图像生物标志物,并且有可能改善治疗选择。